
SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Polynomial Complexity Classes in Spiking
Neural P Systems

Petr Sosík1,2 Alfonso Rodríguez-Patón1

Lucie Ciencialová2

1Departamento de Inteligencia Artificial, Facultad de Informática
Universidad Politécnica de Madrid, Campus de Montegancedo s/n

Boadilla del Monte, 28660 Madrid, Spain
2Institute of Computer Science, Faculty of Philosophy and Science, Silesian

University in Opava, 74601 Opava, Czech Republic

Eleventh International Conference on Membrane Computing,
24-27 August 2010, Jena, Germany



SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Outline

1 SN P systems
Definitions

2 Spiking versus halting
Recognizer SN P systems

3 Families of recognizer SN P systems
Families of recognizer SN P systems
About SNR(f) and SN∗R(f)

4 Efficiency of basic classes of SN P systems
SN P systems with restrictions imposed on their regular
expressions
PSN∗ ⊆ PSPACE

5 Conclusion



SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Definitions

Spiking neural P system

Definition
A spiking neural membrane system of degree m ≥ 1 is a
construct of the form Π = (O, σ1, . . . , σm, syn, in, out), where:

1 O = {a} is the singleton alphabet (a is called spike);
2 σ1, . . . , σm are neurons;
3 syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for

1 ≤ i ≤ m (synapses between neurons);
4 in, out ∈ {1, 2, . . . ,m} indicate the input neuron (resp.,

output neuron).
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Definitions

Spiking neural P system
Neurons

Definition
Neurons are on the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

ni ≥ 0 is the initial number of spikes contained in σi;
Ri is a finite set of rules of the following two forms:

E/ac → a; d, where E is a regular expression over a, c ≥ 1,
and d ≥ 0;
as → λ, for some s ≥ 1, with the restriction that for each
rule E/ac → a; d of type (1) from Ri, we have as /∈ L(E);
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Definitions

Configuration, transition, computation

Configuration
The initial configuration of the system is described by the
numbers of spikes n1, n2, . . . , nm present in each neuron.
During a computation, the “state" of the system is
described by

1 the number of spikes present in each neuron,
2 the open/closed condition of each neuron: if a neuron is

closed, then we have to specify when it will become open
again.

Transition
Using the rules, we can define transitions among
configurations. A transition between two configurations C1, C2

is denoted by C1 =⇒ C2.
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Definitions

Computation
Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a
configuration where all neurons are open and no rule can be
used.

Spike train
With any computation (halting or not) we associate a spike
train, the sequence of zeros and ones describing the behavior
of the output neuron: if the output neuron spikes, then we write
1, otherwise we write 0.
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Recognizer SN P systems

Recognizer SN P systems

Definition (Recognizer SN P system)
A recognizer SN P system is an SN P system which has only
halting computations, and whose output neuron spikes no more
than once during each computation. Its computation is called
accepting if the output neuron spikes exactly once, otherwise it
is rejecting.

Lemma (Leporati et al., 2009)
Given a system Π with standard or extended rules, with or
without delays, we can construct a system Π′ with rules of the
same kinds as those of Π which spikes if and only if Π halts.



SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Recognizer SN P systems

Recognizer SN P systems

Definition (Recognizer SN P system)
A recognizer SN P system is an SN P system which has only
halting computations, and whose output neuron spikes no more
than once during each computation. Its computation is called
accepting if the output neuron spikes exactly once, otherwise it
is rejecting.

Lemma (Leporati et al., 2009)
Given a system Π with standard or extended rules, with or
without delays, we can construct a system Π′ with rules of the
same kinds as those of Π which spikes if and only if Π halts.



SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Recognizer SN P systems

Spiking versus halting

Lemma
Given a system Π with standard or extended rules, with or
without delays, we can construct a system Π′ with rules of the
same kinds as those of Π which halts if and only if Π spikes.

Proof
Let us consider an SN P system Π, and let σout be its output neuron . We
construct SN P system 3Π(inspired by [Leporati et al., 2009]) such that we “triple”
Π by:

tripling the number of spikes present in the initial configuration in each
neuron,

replacing each rule E/ac → ap; d with 3E/a3c → ap; d, where 3E is a
regular expression for the set {3n |n ∈ L(E)},
tripling each neuron σc : adding two identical neurons σc′ , σc′′ and
adding new synapses: if σc had originally a synapse to a neuron γ, now
each of σc, σc′ and σc′′ will have synapses to each of γ, γ′ and γ′′.
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Recognizer SN P systems

Spiking versus halting

Proof
Each neuron in 3Π spikes if and only if it spikes in Π. Let dmax denote the
maximal delay in any neuron of Π. We construct a module with an incoming
synapse from σout which produces dmax + 1 consecutive spikes when
obtaining a spike from σout,
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The neuron σhalt will have an outgoing synapse to each neuron of 3Π. During
dmax + 1 steps each neuron of 3Π becomes open and hence it receives a
spike from σhalt. At this moment it will contain

3n+ 1 spikes, n ≥ 0, and no rules can be applied.

3n+ 2 spikes, we add to each neuron of 3Π the rule (aaa)∗aa/a→ λ. The
system eventually halts after dmax + 2 steps.



SN P systems Spiking versus halting Families of recognizer SN P systems Efficiency of basic classes of SN P systems Conclusion

Recognizer SN P systems

Spiking versus halting

Proof
Finally, let us add to 3Π a “perpetuum mobile” circuit of two mutually
interconnected neurons with a single initial spike and the rule a→ a; 0 in
each, and with an incoming synapse from σhalt. In this way we ensure that
3Π halts only if Π spikes.
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Families of recognizer SN P systems

Families of recognizer SN P systems

Definition
A family Π = {Π(w) : w ∈ IX} (respectively,
Π = {Π(n) : n ∈ N}) of recognizer SN P without input (resp.,
with input) is polynomially uniform by Turing machines if there
exists a deterministic Turing machine working in polynomial
time which constructs the system Π(w) (resp., Π(n)) from the
instance w ∈ IX (resp., from n ∈ N).
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Families of recognizer SN P systems

Polynomial encoding of decision problem

Definition
Let X = (IX , θX) be a decision problem, and
Π = {Π(n) : n ∈ N} a family of recognizer SN P systems with
input membrane. A polynomial encoding of X in Π is a pair
(cod; s) of polynomial-time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number
(obtained by means of a reasonable encoding scheme) and
cod(w) is a binary string — an input of the system Π(s(w)).

Lemma (Pérez-Jiménez et al. 2006)
Let X1, X2 be decision problems, r a polynomial-time reduction
from X1 to X2, and (cod; s) a polynomial encoding of X2 in Π.
Then, (cod ◦ r; s ◦ r) is a polynomial encoding of X1 in Π.
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Families of recognizer SN P systems

A decision problem is solvable by family of recognizer SN P
systems

Let R denote an arbitrary type of recognizer SN P systems.

Definition
Let f : N→ N be a constructible function. A decision problem X is
solvable by a family Π = {Π(w) : w ∈ IX} of recognizer SN P
systems of type R without input in time bounded by f , denoted by
X ∈ SN∗R(f), if the following holds:

The family Π is polynomially uniform by Turing machines.

The family Π is f -bounded with respect to X; that is, for each instance
w ∈ IX , every computation of Π(w) performs at most f(|w|) steps.

The family Π is sound with respect to X; that is, for each w ∈ IX , if
there exists an accepting computation of Π(w), then θX(w) = 1.

The family Π is complete with respect to X; that is, for each w ∈ IX , if
θX(w) = 1, then every computation of Π(w) is an accepting
computation.
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Families of recognizer SN P systems

Families of recognizer SN P systems

The SN P system solving an instance w can be generally
nondeterministic, i.e, it may have different possible
computations, but with the same result. Such a P system is
also called confluent.
The family Π is said to provide a semi-uniform solution to the
problem X. In this case, for each instance of X we have a
special P system. Specifically, we denote by

PSN∗R =
⋃

f polynomial

SN∗R(f)

the class of problems to which uniform families of SN P
systems of type R without input provide semi-uniform solution
in polynomial time.
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Families of recognizer SN P systems

Families of recognizer SN P systems

Definition
Let f : N→ N be a constructible function. A decision problem X is
solvable by a family Π = {Π(n) : n ∈ N} of recognizer SN P systems
of type R with input in time bounded by f , denoted by X ∈ SNR(f), if
the following holds:

The family Π is polynomially uniform by Turing machines.

There exists a polynomial encoding (cod, s) of X in Π such that:

The family Π is f -bounded with respect to X; that is, for
each instance w ∈ IX , every computation of Π(s(w)) with
input cod(w) performs at most f(|w|) steps.
The family Π is sound with respect to (X, cod, s); that is, for
each w ∈ IX , if there exists an accepting computation of
Π(s(w)) with input cod(w), then θX(w) = 1.
The family Π is complete with respect to (X, cod, s); that is,
for each w ∈ IX , if θX(w) = 1, then every computation of
Π(s(w)) with input cod(w) is an accepting computation.
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Families of recognizer SN P systems

Families of recognizer SN P systems

The family Π is said to provide a uniform solution to the
problem X. We denote by

PSNR =
⋃

f polynomial

SNR(f)

the class of problems to which uniform families of SN P
systems of type R with input provide uniform solution in
polynomial time. Obviously, for any constructible function f and
a class of SN P systems R we have

SNR(f) ⊆ SN∗R(f) and PSNR ⊆ PSN∗R.
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About SNR(f) and SN∗R(f)

About SNR(f) and SN∗R(f)

Theorem
The classes SNR(f) and SN∗R(f) are closed under the operation of
complement.

Proof
It is necessary to show that for each confluent SN P system Π there exists a
system Π′ whose computation is accepting if and only if the computation of Π

is rejecting. Assume the construction described in [Leporati et al. 2009]. It
presents a module which, when added to any SN P system Π, emits a spike
only after the system Π halts.
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About SNR(f) and SN∗R(f)

[Leporati et al. 2009]
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About SNR(f) and SN∗R(f)

Proof.
Let us extend this module as follows. Let σout be the output
neuron of this module. Let a spike emitted from σout after
halting of the system Π feed two new neurons, each with a rule
a→ a; 0. Finally, add a new neuron σout′ with incoming
synapses from these two neurons, another synapse from the
original output neuron of Π, and with a rule a2 → a; 0. Let σout′
be the output neuron of Π′. Neuron σout′ spikes if and only if Π
halts and its output neuron σout does not spike which concludes
the proof.
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About SNR(f) and SN∗R(f)

Theorem
Let R be a class of SN P systems. Let X and Y be decision
problems such that X is reducible to Y in polynomial time. If
Y ∈ PSNR (respectively, Y ∈ PSN∗R), then X ∈ PSNR (resp.,
X ∈ PSN∗R).

Proof.
Let Π by a family providing uniform solution to the problem Y.
By its definition, let p be a polynomial and (cod, s) a polynomial
encoding of Y in Π such that Π is p-bounded with respect to Y
and sound and complete with respect to (Y, cod, s).
Let further r : IX → IY be a polynomial time reduction from X
to Y, and hence there exists a polynomial q such that for each
w ∈ IX , |r(w)| ≤ q(|w|).
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About SNR(f) and SN∗R(f)

Proof.
Observe that:

(cod ◦ r; s ◦ r) is a polynomial encoding of X in Π.

Π is (p ◦ q)-bounded with respect to X since for each
w ∈ IX , every computation of Π(s(r(w))) with input
cod(r(w)) performs at most p(|r(w)|) ≤ p(q(|w|)) steps.
Π is sound and complete with respect to (X, cod ◦ r, s ◦ r)
since for each w ∈ IX ,

if there exists an accepting computation of Π(s(r(w))) with
input cod(r(w)), then θY (r(w)) = 1 and, by reduction, also
θX(w) = 1,
if θX(w) = 1, then also θY (r(w)) = 1 and hence every
computation of Π(s(r(w))) with input cod(r(w)) is an
accepting computation.

Consequently, X ∈ SNR(p ◦ q) and hence also in PSNR.
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SN P systems with restrictions imposed on their regular expressions

SN P systems with restrictions imposed on their regular
expressions

It was shown already in [García-Arnau et al. 2009] that SN P
systems without delays and with all regular expressions of the
form an, n ≥ 1, are computationally universal. Results in
[Leporati et al. 2007] together with Theorems 1 and 4 in
[Rodríguez-Patón et al. 2010] imply the following statement.

Theorem
PSN−reg,−del = PSN∗−reg,−del = PSNssnf = PSN∗ssnf = P

These results show that families of standard confluent SN P
systems can reach the computational power beyond P only with
the aid of complex regular expressions. Whenever we release
the condition of single star normal forms in regular expressions,
the computational power of SN P systems reaches the class
NP.
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PSN∗ ⊆ PSPACE

PSN∗ ⊆ PSPACE

Lemma

Matching of a regular expression E of size s in succinct form
over a singleton alphabet with a string ak can be done on a
RAM or a Turing machine in non-deterministic polynomial time
with respect to s log k.

Proof.
We have the syntactic tree of the expression E at our disposal.
Its parsing can be done in deterministic polynomial time.
We treat the sub-expressions of the form an as constants and
assign them a leaf node of the tree with the value n.
The matching algorithm works as follows:
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PSN∗ ⊆ PSPACE

Proof.
Produce non-deterministically a random element of L(E)
in succinct form by a depth-first search traversal of its
syntactic tree. Start with the value 0 and evaluate
recursively each node depending on its type as follows:

leaf node containing a constant: return the value of the
node;
catenation: evaluate both subtrees of this node and add the
results;
union: choose non-deterministically one of the subtrees of
this node and evaluate it;
star: draw a random number of iterations x within the range
〈0, k〉, and if x > 0, evaluate the subtree starting in this
node and multiply the result by x, otherwise return 0.

Compare the drawn element of L(E) with ak whether they
are equal.
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PSN∗ ⊆ PSPACE

Proof.
Whenever during the evaluation the computed value exceeds k,
the algorithm halts immediately and reports that ak does not
match L(E). This guarantees that the number of bits processed
in each operation is always O(log k).
Each of the elementary operations described above can be
performed in constant time on RAM with unit instruction price,
except the multiplication which requires O(log k) time. Total
number of tree-traversal steps is O(s). If we implement the
algorithm on Turing machine, the time increases only
polynomially.
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PSN∗ ⊆ PSPACE

Theorem
PSN∗ ⊆ PSPACE

Proof.
It has been shown in [Leporati et al. 2007] that any confluent SN
P system with simple regular expressions can be simulated by a
deterministic Turing machine in polynomial time.
Concerning general regular expressions, by previous lemma
their matching can be done in non-deterministic polynomial time,
and since NP ⊆ PSPACE, also in deterministic polynomial
space.

Indeed, if one replaces the random selection in the proof of
previous lemma by dept-first-search of all configurations
reachable by making nondeterministic choices, one gets a
deterministic algorithm performing matching in polynomial space
and exponential time.
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PSN∗ ⊆ PSPACE

Proof.
Denote by s the size of description of a SN P system Π.
Observe that the total number of bits to describe spikes in all
neurons after t steps of computation is O(s+ t) even in the
case of maximal parallelism or exhaustive rules. The total size
of all regular expressions in Π is O(s). Hence, by previous
lemma, the simulation of Π performs in polynomial space with
respect to s+ t.
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Thank you for your attention!
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