BioSimWare: A P Systems-based Simulation Environment for Biological Systems

Daniela Besozzi¹, Paolo Cazzaniga², Giancarlo Mauri², Dario Pescini²

Università degli Studi di Milano Dipartimento di Informatica e Comunicazione Via Comelico 39, 20135 Milano, Italy besozzi@dico.unimi.it

Università degli Studi di Milano-Bicocca Dipartimento di Informatica, Sistemistica e Comunicazione Viale Sarca 336, 20126 Milano, Italy cazzaniga/mauri/pescini@disco.unimib.it

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

1 BioSimWare

- Stochastic Simulations Algorithms for Single and Multi-Volume Systems
 - Tools for The Analysis of Stochastic Simulations
 - Parameter Estimation (PE)
 - Parameter sweep applications (PSA)

3

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

Outline

BioSimWare

- 2 Stochastic Simulations Algorithms for Single and Multi-Volume Systems
- 3 Tools for The Analysis of Stochastic Simulations
 - Parameter Estimation (PE)
 - Parameter sweep applications (PSA)

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5 Conclusion

Introduction

BioSimWare is a simulation environment based on P systems, that provides a user-friendly framework for the modeling of biological systems ranging from cellular processes to population phenomena.

User Interface: rules specification

*	BioSimWare: Ras-cAMP-PKA pathway	
le Simulation Help		
Rules Conditions Output		
	Ras-cAMP-PKA	pathway
39 Reactions	Constants	33 Molecular Species
55 Reactions	constants	b a see
1 Ras2_GDP+Cdc25->Ras2_GDP_Cdc25	1.000E00	1 Rasz GDP
2 Ras2 GDP Cdc25-9Ras2 GDP+Cdc25	1.500500	2 Par2 GDB Cdc25
4 Ras2 Cdc25+ GDR >Ras2 GDR Cdc25	1.000500	4 Bas2 Cdc25
5 Bas2 Cdc25+GTP->Bas2 GTP Cdc25	1.000E00	5 GDP
6 Ras2 GTP Cdc25->Ras2 Cdc25+GTP	1,000E00	6 GTP
7 Ras2 GTP Cdc25->Cdc25+Ras2 GTP	1,000E00	7 Ras2 GTP Cdc25
8 Cdc25+Ras2 GTP+>Ras2 GTP Cdc25	1.000E00	8 Ras2_GTP
9 Ras2_GTP+Ira2->Ras2_GTP_Ira2	3.000E-02	9 Ira2
10 Ras2 GTP_Ira2->Ras2 GDP+Ira2	7.000E-01	10 Ras2_GTP_Ira2
11 Ras2_GTP+CYR1->Ras2_GTP_CYR1	1.000E-03	11 CYR1
12 Ras2_GTP_CYR1+ATP->Ras2_GTP_CYR1+cAMP	2.100E-06	12 Ras2_GTP_CYRL
13 Ira2+Ras2_GTP_CYR1->Ras2_GDP+Ira2+CYR1	1.000E-03	13 ATP
14 CAMP+PKA->CAMP_PKA	1.0000-05	14 Guille
15 CAMP+CAMP_PKA->2CAMP_PKA	1.000E-05	16 CAMP DVA
17 CAMP+2CAMP_PAA->3CAMP_PAA	1.0005-05	17 2camp pka
18 dramp PKA-SCAMP+ 3CAMP PKA	1.000E+01	18 3CAMP PKA
19 3CAMP PKA->CAMP+2CAMP PKA	1.000E-01	19 4CAMP PKA
20 2CAMP PKA->CAMP+CAMP PKA	1.000E-01	20 C
21 CAMP PKA->CAMP+PKA	1.000E-01	21 R_2cAMP
22 4cAMP_PKA->2*C+2*R_2cAMP	1.000E00	22 R
23 R_2cAMP+>2*cAMP+R	1.000E00	23 R_C
24 C+R->R_C	7.500E-01	24 Pde1
25 2'R_C->PKA	1.000E00	2 Pdelt
26 C+Pde1->C+Pde1t	1.000E-06	26 GAMP Pdelf
27 CAMP+PGell->CAMP_PGell	1.000E-01	28 0042
20 cAMD_Ddolf >Ddolf AMD	7.500600	29 Pde2
30 Ddo1f+DDA2->Ddo1+DDA2	1.000E+04	30 cAMP Pde2
31 cAMP+Pde2->cAMP Pde2	1.000E-04	31. Cdc25f
32 cAMP Pde2->cAMP+Pde2	1.000E00	32 Ira2P
33 cAMP_Pde2->AMP+Pde2	1.700E00	33 Ras2_GTP_Ira2P
34 Cdc25+C+>C+Cdc25f	1.000E00	
35 PPA2+Cdc25f->Cdc25+PPA2	1.000E-02	
36 lra2+C->C+Ira2P	0.000E00	
37 Ras2_GTP+Ira2P->Ras2_GTP_Ira2P	■ 0.000E00	
0		
Insert	Delete	

User Interface: system conditions specification

Å	BioSimWare: Ras-cAMP-Pi	KA pathway	- <u> </u>
File Simulation Help			
🗅 🚅 🖩 🕨			
Rules Conditions Output	t		
	Ras-cAMP-PKA	A pathway	
select all			
Output Ind	Molecular Species	Amounts	Feed
	Ras2_GDP	1.932E04	-
	Cdc25	0.000E00	
	Ras2_GDP_Cdc25	1.760E02	
	Ras2_Cdc25	0.000E00	
	GDP	1.500E06	×
	GTP	4.784E06	
	Ras2_GTP_Cdc25	1.230E02	
	Ras2_GTP	2.000E01	
	Ira2	0.000E00	
	Ras2_GTP_Ira2	0.000E00	
	CYRL	1.000E00	
	Ras2_GTP_CYR1	1.990E02	
	ATP	2.400E07	×
×	cAMP	3.962E04	
	PKA	5.450E02	
	cAMP_PKA	5.140E92	
	2cAMP_PKA	5.910E02	
	3cAMP_PKA	4.950E02	
	4cAMP_PKA	1.650E02	
	c	3.540E02	
	R_2cAMP	3.520E02	
	R	2.000E00	
	R_C	2.600E01	
	Pdel	9.380202	
	Pdelf	2.000E00	
	cAMP_Pde1f	4.600E02	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

User Interface: plot of the dynamics

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Outline

BioSimWare

Stochastic Simulations Algorithms for Single and Multi-Volume Systems

- Tools for The Analysis of Stochastic Simulations
 - Parameter Estimation (PE)
 - Parameter sweep applications (PSA)

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5 Conclusion

Available simualtion algorithm

Single Volume

- SSA
- tau leaping
- adaptive tau leaping
- average tau leaping dynamics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ODE integrator

Multi Volume

- DPP
- tau-DPP
- Stau-DPP

Outline

3

1) BioSimWare

2 Stochastic Simulations Algorithms for Single and Multi-Volume Systems

Tools for The Analysis of Stochastic Simulations

- Parameter Estimation (PE)
- Parameter sweep applications (PSA)

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5 Conclusion

PE: the goal

We would like to reproduce the target dynamics via stochastic simulations:

not necessarily using the same set of constants.

PE: the problem

Quantify the "distance" among the dynamics and find the closest one

The fitness: Standard Distance

The fitness: tricks

Facts related to intrinsic noise that should not be neglected:

- each outcome *j* is quantitatively different $\{X(\tau_i)\}_i$
 - not evenly sampled $\{\tau_i\}_i$
 - not same number of points
 - $\{ \neq X(\tau_i) \}_j$
- in the thermodynamic limit $\{X(\tau_i)\} \rightarrow [X](t_i)$
 - exploit ensemble behavior (may flatten oscillations, not in phase outcome)

•
$$\langle F(X(\tau_i)) \rangle \stackrel{?}{=} F(\langle X(\tau_i) \rangle)$$

 same parameters, possibly (almost always), generate different values of the fitness function ("weak convergence")

The fitness: "Area" distance

Reconstructed dynamics

Parameter sweep applications (PSA)

A PSA consists in a repeated execution of an application (usually performed a large number of times), where each execution is achieved using a different parametrisation. In the context of biochemical stochastic models a PSA could be viewed as PSA = (P; D; M), where

- $P = (p_1; ...; p_n)$ is the set of parametrisations with $p_i = (x_0^i; c^i)$
- $D = (d_1; ...; d_n)$ $d_i = (x_i(0); ...; x_i(t))$ where t is the halting time of the simulation *i*
- *M* is the biochemical model that provides the map $p_i \rightarrow d_i$

PSA: EGEE Grid

EGEE project infrastructure, a wide area grid platform for scientific applications, composed of thousands of CPUs, which implements the Virtual Organisation (VO) paradigm.

- More than 90 partners in 32 countries, organised in 13 Federations
- A Grid infrastructure spanning almost 240 sites across 45 countries
- An infrastructure of 41,000 CPU available to users 24 hours a day, 7 days a week
- More than 5 Petabytes (5 million Gigabytes) of storage
- Sustained and regular workloads of 30K jobs/day, reaching up to 98K jobs/day

Perturbed parameters fitness

Outline

BioSimWare

- 2 Stochastic Simulations Algorithms for Single and Multi-Volume Systems
- 3 Tools for The Analysis of Stochastic Simulations
 - Parameter Estimation (PE)
 - Parameter sweep applications (PSA)

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5 Conclusion

The Schlögl System

$$r_{1}: A + 2X \xrightarrow{3 \cdot 10^{-7}} 3X$$

$$r_{2}: 3X \xrightarrow{10^{-4}} A + 2X$$

$$r_{3}: B \xrightarrow{10^{-3}} 3X$$

$$r_{4}: X \xrightarrow{3.5} B$$

$$A = 1 \cdot 10^5$$
 $B = 2 \cdot 10^5$ $X = 250$

・ロト・日本・日本・日本・日本・日本

The Brusselator

$$r_{1} : A \xrightarrow{1} X$$

$$r_{2} : B + X \xrightarrow{5 \cdot 10^{-3}} Y$$

$$r_{3} : 2X + Y \xrightarrow{2 \cdot 5 \cdot 10^{-5}} 3X$$

$$r_{4} : X \xrightarrow{1 \cdot 5} \lambda$$

A = X = 200 B = 600 Y = 300

(日)

Comparison GA & PSO: Oscillating Brusselator

Comparison GA & PSO: Damped Brusselator

Stiff systems: an example

A system is said to be stiff if is characterized by well-separeted fast and slow dynamical modes, the fastest of which is stable.

The decaying dimerization model:

$$r_{1}: S_{1} \xrightarrow{1} \lambda$$

$$r_{2}: S_{1} + S_{1} \xrightarrow{10} S_{2}$$

$$r_{3}: S_{2} \xrightarrow{10^{3}} S_{1} + S_{1}$$

$$r_{4}: S_{2} \xrightarrow{0.1} S_{3}$$

$$S_1 = 10^4 \, \, S_2 = S_3 = 0$$

	SSA	tau leaping	adaptive tau leaping
average number of steps	2.46 · 10 ⁷	1 · 10 ⁶	945
total execution time	175h 1m	11h 47m	1m 51s

Decaying dimerization: algorithms comparison

・ロト・西ト・西ト・西ト・日・ つくの

Bacterial chemotaxis

Chemotaxis allows bacteria to respond to ligand concentration gradients in their surroundings:

- random walk through an homogeneous environment \rightarrow high switching frequency of flagellar rotation
- directional swimming in presence of ligand concentration gradient → reduced switching frequency of flagellar rotation
- adaptation: if ligand concentration remains constant → switching frequency is reset to random walk level

Sensing Responding Adapting

	Reagents	Products	Methyl. state
1	2MCP ^m + 2CheW	2MCP ^m ::2CheW	<i>m</i> = 0
2	2MCP ^m ::2CheW	2MCP ^m + 2CheW	<i>m</i> = 0
3	2MCP ^m ::2CheW + 2CheA	2MCP ^m ::2CheW::2CheA	<i>m</i> = 0
4	2MCP ^m ::2CheW::2CheA	2MCP ^m ::2CheW + 2CheA	<i>m</i> = 0
5-8	2MCP m ::2CheW::2CheA + CheR	2MCP ^{m+1} ::2CheW::2CheA + CheR	$m = 0, \ldots, 3$
9-12	2MCP ^m ::2CheW::2CheA + CheBp	2MCP ^{m-1} ::2CheW::2CheA + CheBp	m = 1,, 4
13-17	2MCP ^m ::2CheW::2CheA + ATP	2MCP ^m ::2CheW::2CheAp	$m = 0, \ldots, 4$
18-22	2MCP ^m ::2CheW::2CheAp + CheY	2MCP ^m ::2CheW::2CheA + CheYp	$m = 0, \ldots, 4$
23-27	2MCP ^m ::2CheW::2CheAp + CheB	2MCP ^m ::2CheW::2CheA + CheBp	$m = 0, \ldots, 4$
28-32	lig + 2MCP ^m ::2CheW::2CheA	lig::2MCP ^m ::2CheW::2CheA	$m = 0, \ldots, 4$
33-37	lig::2MCP ^m ::2CheW::2CheA	lig + 2MCP ^m ::2CheW::2CheA	$m = 0, \ldots, 4$
38-41	lig::2MCP ^m ::2CheW::2CheA + CheR	lig::2MCP ^{m+1} ::2CheW::2CheA + CheR	$m = 0, \ldots, 3$
42-45	lig::2MCP ^m ::2CheW::2CheA + CheBp	lig::2MCP ^{m-1} ::2CheW::2CheA + CheBp	$m = 1, \ldots, 4$
46-50	lig::2MCP ^m ::2CheW::2CheA + ATP	lig::2MCP ^m ::2CheW::2CheAp	$m = 0, \cdots, 4$
51-55	lig::2MCP ^m ::2CheW::2CheAp + CheY	lig::2MCP ^m ::2CheW::2CheA + CheYp	$m = 0, \ldots, 4$
56-60	lig::2MCP ^m ::2CheW::2CheAp + CheB	lig::2MCP ^m ::2CheW::2CheA + CheBp	$m = 0, \ldots, 4$
61	CheYp + CheZ	CheY + CheZ	
62	CheBp	CheB	

62 reactions, 32 molecular species

Sensing Responding Adapting

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

CheYp and the flagellar rotation

Our assumptions:

- the flagellar motor switch is sensitive to a threshold level of CheYp, that is hereby evaluated as the mean value of CheYp at steady state
- we make a one-to-one correspondence between the behavior of a single flagellum and one temporal evolution of CheYp generated by one run of the tau leaping algorithm.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Many flagella and running or tumbling

$$\mathcal{T}_{\mathsf{sync}}^{\mathsf{n}} = \{t \in \Delta t_{sim} \mid \mathsf{CCW}_{s_i}(t) = true \text{ for all } i = 1, \dots, n\}$$

 \mathcal{T}_{sync}^{n} is the set of all times during which *all* time series s_{i} are below the threshold μ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

That corresponds to the running motion of the bacterium

Many flagella and running or tumbling

Running

 $<\Delta t_{run}>$

all flagella rotate CCW

Tumbling

 $<\Delta t_{\textit{tumb}}>$ some flagella rotate CW

Adapting

$$<\Delta t_{a dapt}>$$

length of the negative peak

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fredkin Gate: definition

Reacti	on	Constant
<i>r</i> ₁ :	a + b ightarrow a + d	$c_1 = 1 \cdot 10^{-3}$
r ₂ :	$a + c \rightarrow a + e$	$c_2 = 1 \cdot 10^{-3}$
<i>r</i> 3 :	$a + B \rightarrow a + D$	$c_3 = 1 \cdot 10^{-3}$
<i>r</i> ₄ :	$a + C \rightarrow a + E$	$c_4 = 1 \cdot 10^{-3}$
<i>r</i> ₅ :	A+b ightarrow A'	$c_5 = 1 \cdot 10^{-3}$
r ₆ :	A' + c ightarrow A + d + e	$c_6 = 1 \cdot 10^{-1}$
r ₇ :	A'+C ightarrow A+D+e	$c_7 = 1 \cdot 10^{-1}$
r ₈ :	$A + B \rightarrow A^{\prime\prime}$	$c_8 = 1 \cdot 10^{-3}$
r ₉ :	$A^{\prime\prime}+c ightarrow A+d+E$	$c_9 = 1 \cdot 10^{-1}$
r ₁₀ :	$A^{\prime\prime}+C ightarrow A+D+E$	$c_{10} = 1 \cdot 10^{-1}$

$\alpha_i \beta_i \gamma_i$	\mapsto	$\alpha_o \beta_o \gamma_o$
000		000
001		001
010		010
011		011
100		100
101		110
110		101
111		111

React	ion	Constant
r ₁₁ :	$a + A ightarrow \lambda$	$c_{11} = 1 \cdot 10^{-1}$
r ₁₂ :	$b + B ightarrow \lambda$	$c_{12} = 1 \cdot 10^{-1}$
r ₁₃ :	$c+C ightarrow \lambda$	$c_{13} = 1 \cdot 10^{-1}$
r ₁₄ :	$d + D \rightarrow \lambda$	$c_{14} = 1 \cdot 10^{-1}$
r ₁₅ :	$e + E ightarrow \lambda$	$c_{15} = 1 \cdot 10^{-1}$
r ₁₆ :	$\lambda \rightarrow a$	$c_{16} \in \{0, 1\}$
r ₁₇ :	$\lambda \rightarrow A$	$c_{17} \in \{0, 1\}$
r ₁₈ :	$\lambda \rightarrow b$	<i>c</i> ₁₈ ∈ {0, 1}
r ₁₉ :	$\lambda \rightarrow B$	<i>c</i> ₁₉ ∈ {0, 1}
r ₂₀ :	$\lambda \rightarrow c$	$c_{20} \in \{0,1\}$
r ₂₁ :	$\lambda \rightarrow C$	$c_{21} \in \{0, 1\}$

Fredkin Gate: definition

Reacti	on	Constant
<i>r</i> ₁ :	a + b ightarrow a + d	$c_1 = 1 \cdot 10^{-3}$
r ₂ :	a + c ightarrow a + e	$c_2 = 1 \cdot 10^{-3}$
r3 :	$a + B \rightarrow a + D$	$c_3 = 1 \cdot 10^{-3}$
<i>r</i> ₄ :	$a + C \rightarrow a + E$	$c_4 = 1 \cdot 10^{-3}$
<i>r</i> ₅ :	A+b ightarrow A'	$c_5 = 1 \cdot 10^{-3}$
r ₆ :	A' + c ightarrow A + d + e	$c_6 = 1 \cdot 10^{-1}$
r ₇ :	A'+C ightarrow A+D+e	$c_7 = 1 \cdot 10^{-1}$
r ₈ :	$A + B \rightarrow A^{\prime\prime}$	$c_8 = 1 \cdot 10^{-3}$
r ₉ :	$A^{\prime\prime}+c ightarrow A+d+E$	$c_9 = 1 \cdot 10^{-1}$
r ₁₀ :	$A^{\prime\prime}+C ightarrow A+D+E$	$c_{10} = 1 \cdot 10^{-1}$

$\alpha_i \beta_i \gamma_i$	\mapsto	$\alpha_o \beta_o \gamma_o$
abc		ade
abC		a d E
aBc		аDе
a B C		a D E
Abc		Ade
AbC		A D e
ABC		AdE
ABC		ADE

Reacti	on	Constant
r ₁₁ :	$a + A ightarrow \lambda$	$c_{11} = 1 \cdot 10^{-1}$
r ₁₂ :	$b + B ightarrow \lambda$	$c_{12} = 1 \cdot 10^{-1}$
r ₁₃ :	$c+C ightarrow \lambda$	$c_{13} = 1 \cdot 10^{-1}$
r ₁₄ :	$d + D ightarrow \lambda$	$c_{14} = 1 \cdot 10^{-1}$
r ₁₅ :	$e + E ightarrow \lambda$	$c_{15} = 1 \cdot 10^{-1}$
r ₁₆ :	$\lambda \rightarrow a$	<i>c</i> ₁₆ ∈ {0, 1}
r ₁₇ :	$\lambda \rightarrow A$	$c_{17} \in \{0, 1\}$
r ₁₈ :	$\lambda \rightarrow b$	<i>c</i> ₁₈ ∈ {0, 1}
r ₁₉ :	$\lambda \rightarrow B$	$c_{19} \in \{0,1\}$
r ₂₀ :	$\lambda \rightarrow c$	$c_{20} \in \{0, 1\}$
r ₂₁ :	$\lambda \rightarrow C$	$c_{21} \in \{0, 1\}$

Fredkin Gate: simulations

First input $(\alpha_i, \beta_i, \gamma_i) = (0, 0, 1)$ at t = 0Second input $(\alpha_i, \beta_i, \gamma_i) = (0, 1, 1)$ at t = 500

 $\begin{array}{c} a \ b \ C \rightarrow a \ d \ E \\ a \ B \ C \rightarrow a \ D \ E \end{array}$

First input $(\alpha_i, \beta_i, \gamma_i) = (0, 0, 1)$ at t = 0Second input $(\alpha_i, \beta_i, \gamma_i) = (1, 0, 1)$ at t = 400

 $a b C \rightarrow a d E$ $A b C \rightarrow A D e$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Fredkin Circuits

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Outline

BioSimWare

- 2 Stochastic Simulations Algorithms for Single and Multi-Volume Systems
- 3 Tools for The Analysis of Stochastic Simulations
 - Parameter Estimation (PE)
 - Parameter sweep applications (PSA)

Applications

- The Schlögl System
- The Brussellator
- Stiff Systems
- Bacterial Chemotaxis
- Simulation of Fredkin Circuits by Chemical Reaction Systems

Summary

BioSimWare is a simulation environments for the investigation of various biological systems that can range from cellular processes to population phenomena and to ecological systems.

(ロ) (同) (三) (三) (三) (○) (○)

Features

- Single/Multi volume simulations (stochastic and deterministic)
- Parameter Estimation (HC, GA, PSO)
- Parameter Sweep
- Analysis of the dynamics

Implementations

- Linux, Windows, Mac OS
- Single Processor, MPI, GRID
- SBML