
Matrix Representation of Spiking Neural P

Systems

Xiangxiang Zeng1, Henry Adorna2, Miguel Ángel Mart́ınez-del-Amor3,
Linqiang Pan1,⋆, Mario J. Pérez-Jiménez3

1 Image Processing and Intelligent Control Key Laboratory of Education Ministry
Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, China
xzeng@foxmail.com, lqpan@mail.hust.edu.cn

2 Department of Computer Science
(Algorithms and Complexity)
University of the Philippines

Diliman 1101 Quezon City, Philippines
hnadorna@dcs.upd.edu.ph

3 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{perezh,marper}@us.es

Abstract. Spiking neural P systems (SN P systems, for short) are a
class of distributed parallel computing devices inspired from the way neu-
rons communicate by means of spikes. In this work, a discrete structure
representation of SN P systems with extended rules and without delay is
proposed. Specifically, matrices are used to represent SN P systems. In
order to represent the computations of SN P systems by matrices, con-
figuration vectors are defined to monitor the number of spikes in each
neuron at any given configuration; transition net gain vectors are also
introduced to quantify the total amount of spikes consumed and pro-
duced after the chosen rules are applied. Nondeterminism of the systems
is assured by a set of spiking transition vectors that could be used at
any given time during the computation. With such matrix representa-
tion, it is quite convenient to determine the next configuration from a
given configuration, since it involves only multiplication and addition of
matrices after deciding the spiking transition vector.

1 Introduction

Membrane computing was initiated by Păun [6] and has developed very rapidly
(already in 2003, ISI considered membrane computing as “fast emerging re-
search area in computer science”, see http://esi-topics.com). It aims to ab-

⋆ Corresponding author. Tel.: +86-27-87556070; Fax: +86-27-87543130.

stract computing ideas (data structures, operations with data, computing mod-
els, etc.) from the structure and the functioning of single cell and from complexes
of cells, such as tissues and organs, including the brain. The obtained models
are distributed and parallel computing devices, called P systems. For updated
information about membrane computing, please refer to [8].

This work deals with a class of neural-like P systems, called spiking neural
P systems (SN P systems, for short) [3]. SN P systems were inspired by the
neurophysiological behavior of neurons (in brain) sending electrical impulses
along axons to other neurons, with the aim of incorporating specific ideas from
spiking neurons into membrane computing. Generally speaking, in an SN P
system the processing elements are called neurons and are placed in the nodes
of a directed graph, called the synapse graph. The content of each neuron consists
of a number of copies of a single object type, namely the spike. Each neuron may
also contain rules which allow to remove a given number of spikes from it, or
send spikes (possibly with a delay) to other neurons. The application of every
rule is determined by checking the content of the neuron against a regular set
associated with the rule.

Representation of P systems by discrete structures has been one topic in the
field of membrane computing. One of the promising discrete structures to rep-
resent P systems is matrix. Models with matrices as their representation have
been helpful to physical scientists – biologists, chemists, physicists, engineers,
statisticians, and economists – solving real world problems. Recently, matrix
representation was introduced for represent a restricted form of cell-like P sys-
tems without dissolution (where only non-cooperative rules are used) [2]. It was
proved that with an algebraic representation P systems can be easily simulated
and computed backward (that is, to find all the configurations that produce a
given one in one computational step).

In this work, a matrix representation of SN P systems without delay is pro-
posed, where configuration vectors are defined to represent the number of spikes
in neurons; spiking vectors are used to denote which rules will be applied; a
spiking transition matrix is used to describe the skeleton of a system; the transi-
tion net gain vectors are also introduced to quantify the total amount of spikes
consumed and produced after the chosen rules are applied. With this algebraic
representation, matrix transition can be used to compute the next configuration
from a given one.

In addition, we consider another variant of SN P systems, SN P systems
with weights (WSN P systems, for short), which were introduced in [9]. In these
systems, each neuron has a potential and a given threshold, whose values are
real (computable) numbers. Each neuron fires when its potential is equal to its
threshold; at that time, part of the potential is consumed and a unit potential
is produced (a spike). The unit potential is passed to neighboring neurons mul-
tiplied with the weights of synapses. The weights of synapses can also be real
(computable) numbers. This variant of SN P system allows real numbers to be
computed by the system.

A matrix over RC is defined to represent WSN P systems, where vectors are
defined to represent the potentials in neurons and the application of rules. In
particular, when the potential of a neuron is smaller than its spiking threshold,
then this potential vanishes (the potential of the neuron is set to zero). Therefore,
a forgetting vector is introduced to denote the potential vanishing from neurons.
It is also shown that matrix representation is convenient for deciding the next
configuration of the system from a given configuration.

The rest of this paper is organized as follows. In the next section, the defini-
tion of SN P systems is introduced. In Section 3 the matrix representation of SN
P systems is given, and an example is given to illustrate how to represent the
computation of an SN P system by matrix transition. In Section 4 the matrix
representation method is extended to WSN P systems. Conclusions and remarks
are given in Section 5.

2 Spiking Neural P Systems

In this section, a restricted variant of SN P systems, SN P systems without delay,
is introduced.

Definition 1. An SN P system without delay, of degree m ≥ 1, is a construct
of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap, where E is a regular expression over a, and c ≥ 1, p ≥ 1,
with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap

of type (1) from Ri, as /∈ L(E);

3. syn = {(i, j) | 1 ≤ i, j ≤ m, i 6= j } (synapses between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are spiking (also called firing) rules, which are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap ∈ Ri can be applied. This means that consuming (removing) c spikes
(thus only k−c spikes remain in σi), the neuron is fired, and it produces p spikes;
these spikes are transported to all neighbor neurons by outgoing synapses. If a
rule E/ac → ap has E = ac, then it is written in the simplified form ac → ap.

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

In each time unit, if a neuron σi can apply one of its rules, then a rule
from Ri must be applied. Since two spiking rules, E1/ac1 → ap1 and E2/ac2 →
ap2 , can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules are
applicable in a neuron. In that case, only one of them is chosen and applied non-
deterministically. However, note that, by definition, if a spiking rule is applicable,
then no forgetting rule is applicable, and vice versa.

Thus, the rules are applied in the sequential manner in each neuron, at most
one in each step, but neurons function in parallel with each other. It is important
to notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron.

The configuration of the system is described by the number of spikes present
in each neuron. Using the rules as described above, one can define transitions
among configurations. Any sequence of transitions starting in the initial configu-
ration is called a computation. A computation halts if it reaches a configuration
where no rule can be applied. The result of a computation is the number of
steps elapsed between the first two spikes sent by the output neuron to the
environment during the computation.

3 Matrix Representation of SN P Systems

In this section, a matrix representation of SN P systems is given. Based on
this representation, it is shown how the computation of SN P systems can be
represented by operations with matrices.

As mentioned in the above section, a configuration of the system is described
by the number of spikes present in each neuron. Here, vectors are used to repre-
sent configurations.

Definition 2 (Configuration Vectors). Let Π be an SN P system with m
neurons, the vector C0 = (n1, n2, . . . , nm) is called the initial configuration
vector of Π, where ni is the amount of the initial spikes present in neuron σi,
i = 1, 2, . . . , m before a computation starts.

In a computation, for any k ∈ N, the vector Ck = (n
(k)
1 , n

(k)
2 , . . . , n

(k)
m) is

called the kth configuration vector of the system, where n
(k)
i is the amount

of spikes in neuron σi, i = 1, 2, . . . , m after the kth step of the computation.

In order to describe which rules are chosen and applied in each configuration,
spiking vectors are defined.

Definition 3 (Spiking Vectors). Let Π be an SN P system with m neurons

and n rules, and Ck = (n
(k)
1 , n

(k)
2 , . . . , n

(k)
m) be the kth configuration vector of Π.

Assume a total order d : 1, . . . , n is given for all the n rules, so the rules can be
referred as r1, . . . , rn. A spiking vector s(k) is defined as follows:

s(k) = (r
(k)
1 , r

(k)
2 , . . . , r(k)

n),

where:

r
(k)
i =

1, if the regular expression Ei of rule ri is satisfied by the

number of spikes n
(k)
j (rule ri is in neuron σj) and

rule ri is chosen and applied;
0, otherwise.

In particular, s(0) = (r
(0)
1 , r

(0)
2 , . . . , r

(0)
n) is called the initial spiking vector.

The application of each rule will change the number of spikes in some neurons,
for example, when the rule ri : E/ac → ap is applied in neuron σj , it consumes
c spikes in σj , and emits p spikes; these p spikes are immediately delivered to
all the neurons σs such that (j, s) ∈ syn. Here, a spiking transition matrix is
defined to denote the amount of spikes consumed (or received) by each neuron
via each rule.

Definition 4 (Spiking Transition Matrix). Let Π be an SN P system with
m neurons and n rules, and d : 1, . . . , n be a total order given for all the n rules.
The spiking transition matrix of the system Π, MΠ, is defined as follows:

MΠ = [aij]n×m,

where:

aij =

−c, if rule ri is in neuron σj and it is applied consuming c spikes;
p, if rule ri is in neuron σs (s 6= j and (s, j) ∈ syn)

and it is applied producing p spikes;
0, if rule ri is in neuron σs (s 6= j and (s, j) /∈ syn).

In a spiking transition matrix, the row i is associated with the rule ri :
E/ac → ap. Assume that the rule ri is in neuron σj . When the rule ri is applied,
it consumes c spikes in neuron σj ; neuron σs (s 6= j and (j, s) ∈ syn) receives
p spikes from neuron σj ; neuron σs (s 6= j and (j, s) /∈ syn) receives no spike
from neuron σj . By the definition of spiking transition matrix, the entry in the
position (i, j) is a negative number; the other entries in the row i are non-negative
numbers. So the following observation holds:

Observation 1: each row of a spiking transition matrix has exactly one
negative entry.

In a spiking transition matrix, the column i is associated with neuron σi. For
an SN P system, without loss of generality, it can be assumed that each neuron
has at least one rule inside (if a neuron has no rule inside, it just stores spikes,
sending no spikes to other neurons or environment, so it can be deleted without
any influence to the computational result of the system). Assume the rules in
neuron σi are rm, rn, These rules consume spikes of neuron σi when they are
applied. So the corresponding entries (m, i), (n, i), . . . in the spiking transition
matrix are negative numbers, and the following observation holds:

Observation2: each column of a spiking transition matrix has at least one
negative entry.

In the following, it will be shown that how matrices representing SN P sys-
tems can be used to represent the computation of SN P systems by operating
with matrices. Before the matrix operations for SN P systems are formally de-
fined, a simple example is provided as follows.

Example 1. Let us consider an SN P system Π = ({a}, σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1, where σ1 = (2, R1), with
R1 = {a2/a → a, a2 → a}; σ2 = (1, R2), with R2 = {a → a}; σ3 = (1, R3), with
R3 = {a → a, a2 → λ}; syn = {(1, 2), (1, 3), (2, 1), (2, 3)}; out = 3. Π is also
represented graphically in Figure 1, which may be easier to understand.

a
�

a
�
/a a
a
�
a

a

aa

a

aa

a
�

1

2

31
2

3

4
5

Fig. 1. An SN P system Π that generates the set N − {1}

In order to represent the above SN P system Π in a matrix, a total order is set
for all the rules in the system, which can be seen in Figure 1. With this order,
the rules can be denoted by r1, . . . , r5.

Let MΠ1
= [aij]5×3 be the spiking transition matrix for Π . By Definition

4, the row i of MΠ is associated with the rule ri : E/ac → ap, c ≥ 1, p ≥ 0
in system Π . The entries ai1, ai2, ai3 are the amount of spikes which neurons
σ1, σ2, σ3 will get (or consume) when rule ri is applied.

The spiking transition matrix for the SN P system Π depicted in Figure 1 is
as follows.

MΠ =

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

(1)

Initially, neurons σ1, σ2, and σ3 have 2, 1, and 1 spike(s), respectively. Ac-
cording to Definition 2, the initial configuration vector for system Π would be

C0 = (2, 1, 1). Since neuron σ1 has two rules r1 and r2 that are applicable in the
initial transition, one of the rules could be chosen, the initial spiking transition
vector would be (1, 0, 1, 1, 0) or (0, 1, 1, 1, 0) by Definition 3. Note that the rule
r5 is not applicable because the regular expression a2 is not satisfied in neuron
σ3.

If the rule r1 : a2/a → a is applied, it consumes one spike in neuron σ1 and
sends one spike to neurons σ2 and σ3, respectively; at the same time, neuron σ2

sends one spike to each of the neurons σ1 and σ3. In this step, the net gain of
neuron σ1 is 0 spike (it consumes 1 spike by r1 and receives 1 spike from neuron
σ2); the net gain of neuron σ2 is 0 spike (it consumes 1 spike by r3 and receives 1
spike from neuron σ1); the net gain of neuron σ3 is 1 spike (it consumes 1 spike
by rule r5 and receives 1 spike from each of the neurons σ1 and σ2). After this
step, the numbers of spikes in neurons σ1, σ2 and σ3 are 2, 1 and 2, respectively.

The illustration above explained intuitively how an SN P system compute
from one configuration to the succeeding one. In order to use matrix operations
to represent it, the following definitions are needed:

Definition 5 (Transition Net Gain Vector). Let Π be an SN P system with

m neurons and n rules, and Ck = (n
(k)
1 , n

(k)
2 , . . . , n

(k)
m) be the kth configuration

vector of Π. The transition net gain vector at step k is defined as NG(k) =
Ck+1 − Ck.

Lemma 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, and s(k)

the spiking vector at step k. Then the transition net gain vector at step k can be
obtained by

NG(k) = s(k) · MΠ . (2)

Proof. Assume that MΠ = [aij]m×n, s(k) = (r
(k)
1 , r

(k)
2 , . . . , r

(k)
n), and NG(k) =

(g1, g2, . . . , gm). Note that the spiking vector s(k) is a {0, 1}-vector that identifies

the rules that would be applied at step k. Thus, Σn
i=1 r

(k)
i aij represents the total

amount of spikes received and consumed by neuron σj after applying the rules

identified by s(k). Therefore, the net gain of neuron σj is gj = Σn
i=1 r

(k)
i aij , for

all j = 1, 2, . . . , m. That is, NG(k) = s(k) · MΠ .

Theorem 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the kth
configuration vector, and s(k) the spiking vector at step k, then the configuration
Ck+1 of Π can be obtained by

Ck+1 = Ck + s(k) · MΠ . (3)

Proof. This results follows directly from the preceding Lemma.

Let us go back to the example shown in Figure 1. Given the initial configura-
tion vector C0 = (2, 1, 1), the next configuration of system Π can be computed
as follows.

If the rules r1, r3, r4 are chosen to be applied, the spiking vector is s(0) =
(1, 0, 1, 1, 0), and the next configuration is

C1 = (2, 1, 1) + (1, 0, 1, 1, 0)

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

= (2, 1, 2). (4)

In the next step, r1, r3, r5 are chosen to be applied, the spiking vector is
(1, 0, 1, 0, 1), and the next configuration is

C2 = (2, 1, 2) + (1, 0, 1, 0, 1)

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

= (2, 1, 2), (5)

where the transition net gain vector is

NG = (1, 0, 1, 0, 1)

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

= (0, 0, 0). (6)

Equation (6) means that the configuration of the system remains unchanged
as long as the rules r1, r3 and r5 are chosen to be applied. However, at any
moment, starting from the first step of computation, neuron σ1 can choose to
apply the rule r2 : a2 → a. In this case, system will go to another configuration.
The checking is left to the readers.

The following Corollary is a direct consequence of the preceding Theorem.

Corollary 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the
kth configuration vector, and s(k−1) the spiking vector at step k − 1, then the
previous configuration Ck−1 is

Ck−1 = Ck − s(k−1) · MΠ . (7)

In the above matrix representation, the spikes sent to the environment are not
considered. In order to consider the spikes sent to the environment, an augmented
spiking transition matrix is introduced.

Definition 6 (Augmented Transition Spiking Matrix). Let Π be an SN P
system with m neurons and n rules, d : 1, . . . , n be a total order for the n rules,
and MΠ the n × m spiking transition matrix of Π. An augmented spiking
transition matrix is defined as

[MΠ | e]n×(m+1),

where the column e = (e1, e2, . . . , en)T represents the spikes sent to the environ-
ment, with:

ei =

{

p, if rule ri is in the output neuron and it is applied producing p spikes;
0, if rule ri is not in the output neuron.

Correspondingly, the augmented configuration vector after the kth step
in the computation is defined as

Ck = (n
(k)
1 , n

(k)
2 , . . . , n(k)

m , n(k)
e),

where n
(k)
i is the amount of spikes in neuron σi, for all i = 1, 2, . . . , m, n

(k)
e is

the amount of spikes collected in the environment. Using this vector instead of
the configuration vector in Definition 2 allows us to monitor the output of the
system.

4 Matrix Representation for WSN P Systems

In this section, matrix representation for spiking neural P systems with weights
(WSN P systems, for short) is investigated. Instead of counting spikes as in
usual SN P systems, each neuron in WSN P systems contains a potential, which
can be expressed by a computable real number. Each neuron fires when its
potential is equal to the given threshold. The execution of a rule consumes part
of the potential and produces a unit potential. This unit potential passes to
neighboring neurons multiplied with the weights of synapses. In an SN P system
with weights, the involved numbers – weights, thresholds, potential consumed by
each rule – can be real (computable) numbers. Formally, the system is defined
as follows.

Definition 7. An SN P system with weights, of degree m ≥ 1, is a construct of
the form

Π = (σ1, . . . , σm, syn, in, out),

where:

1. σ1, . . . , σm are neurons of the form σi = (pi, Ri), 1 ≤ i ≤ m, where:

a) pi ∈ Rc is the initial potential in σi;

b) Ri is a finite set of rules of the form Ti/ds → 1, s = 1, 2, . . . , ni for some
ni ≥ 1, where Ti ∈ Rc, Ti ≥ 1, is the firing threshold potential of neuron
σi, and ds ∈ Rc with the restriction 0 < ds ≤ Ti;

2. syn ⊆ {1, 2, . . . , m}× {1, 2, . . . , m}×Rc are synapses between neurons, with
i 6= j, w 6= 0 for each (i, j, w) ∈ syn, 1 ≤ i, j ≤ m;

3. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The spiking rules are applied as follows. Assume that at a given moment,
neuron σi has the potential equal to p. If p = Ti, then any rule Ti/ds → 1 ∈ Ri

can be applied. The execution of this rule consumes an amount of ds of the
potential (thus leaving the potential Ti−ds) and prepares one unit potential (we
also say a spike) to be delivered to all the neurons σj such that (i, j, w) ∈ syn.
Specifically, each of these neurons σj receives a quantity of potential equal to w,
which is added to the existing potential in σj . Note that w can be positive or
negative, hence the potential of the receiving neuron is increased or decreased.
The potential emitted by a neuron σi passes immediately to all neurons σj such
that (i, j, w) ∈ syn, that is, the transition of potential takes no time. If a neuron
σi spikes and it has no outgoing synapse, then the potential emitted by neuron
σi is lost.

The main feature of this system is: (1) each neuron σi has only one fixed
threshold potential Ti; (2) if a neuron has the potential equal to its threshold
potential, then all rules associated with this neuron are enabled, and only one
of them is non–deterministically chosen to be applied; (3) when a neuron spikes,
there is always only one unit potential (a spike) emitted.

If neuron σi has the potential p such that p < Ti, then the neuron σi returns
to the resting potential 0. If neuron σi has the potential p such that p > Ti, then
the potential p keeps unchanged.

Summing up, if neuron σi has potential p and receives potential k at step t,
then at step t + 1 it has the potential p′, where:

p′ =

k, if p < Ti;
p − ds + k, if p = Ti and rule Ti/ds → 1 is applied;
p+k, if p > Ti.

The configuration of the system is described by the distribution of potentials
in neurons. Using the rules described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a configuration where no
rule can be applied. The result of a computation is the number of steps elapsed
between the first two spikes sent by the output neuron to the environment during
the computation.

Similar to Section 2, some vectors are defined to represent configurations and
the application of rules.

Definition 8 (Configuration Vectors). Let Π be a WSN P system with m
neurons, the vector C0 = (p1, p2, . . . , pm) is called the initial configuration
vector of Π, where pi is the amount of the initial potential present in neuron
σi, i = 1, 2, . . . , m before a computation starts.

In a computation, for any k ∈ N, the vector Ck = (p
(k)
1 , p

(k)
2 , . . . , p

(k)
m) is

called the kth configuration vector of the system, where p
(k)
i is the amount

of spikes in neuron σi, i = 1, 2, . . . , m after the kth step in the computation.

Definition 9 (Spiking Vectors). Let Π be a WSN P system with m neurons

and n rules, and Ck = (p
(k)
1 , p

(k)
2 , . . . , p

(k)
m) be the kth configuration vector of Π.

Assume a total order d : 1, . . . , n is given for all the n rules, so the rules can be
referred as r1, . . . , rn. A spiking vector s(k) is defined as follows:

s(k) = (r
(k)
1 , r

(k)
2 , . . . , r(k)

n),

where:

r
(k)
i =

1, if ri in neuron σj is enabled (the potential p
(k)
j in neuron σj is equal

to its spiking threshold tj) and the rule ri is chosen and applied;
0, otherwise.

In particular, s(0) = (r
(0)
1 , r

(0)
2 , . . . , r

(0)
n) is called the initial spiking vector.

In WSN P systems, when the potential of a neuron is smaller than its spiking
threshold, then this potential vanishes, the potential of the neuron is set to zero.
In order to describe which neurons forget their potentials, forgetting vector is
defined.

Definition 10 (Forgetting vector). Let Π be a WSN P system with m neu-

rons, and Ck = (p
(k)
1 , p

(k)
2 , . . . , p

(k)
m) be the kth configuration vector of Π. A

forgetting vector forg(k) is defined as follows:

forg(k) = (f
(k)
1 , f

(k)
2 , . . . , f (k)

m),

where:

f
(k)
i =

{

1 if the potential p
(k)
j in neuron j is less than its spiking threshold tj;

0 otherwise.

In particular, forg(0) = (f
(0)
1 , f

(0)
2 , . . . , f

(0)
m) is called the initial forgetting

vector.

For a WSN P system, a spiking transition matrix is defined in order to
store the information of the amount of potential consumed (or received) by each
neuron when each rule is applied.

Definition 11 (Spiking Transition Matrix). Let Π be a WSN P system with
m neurons and n rules, d : 1, . . . , n a total order given for all the n rules. The
spiking transition matrix of the system Π, MΠ , is defined as follows:

MΠ = [aij]n×m,

where:

aij =

−c, if rule ri is in neuron σj and it is applied consuming potential c;
w, if rule ri is in neuron σs (s 6= j and (s, j, w) ∈ syn)

and it is applied;
0, if rule ri is in neuron σs (s 6= j and (s, j, w) /∈ syn, for w ∈ Rc).

The following example illustrates how to get the matrix representation of a
WSN P system.

Example 2. Let us consider a WSN P system Π1 = (σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1 and 2, where σ1 = (3, R1),
with R1 = {1.5/1.5 → 1, 1.5/1 → 1}; σ2 = (2, R2), with R2 = {1/1 → 1}; σ3 =
(1.5, R3), with R3 = {1.5/1 → 1}; syn = {(1, 2, 1),(1, 3,−0.5), (2, 1, 1),(2, 3, 1.5),
(3, 1,−1.5),(3, 2,−1)}; out = 3. Π1 is also represented graphically in Figure 2.
Note that in Figure 2, when the weight on a synapse is one, it is omitted.

3
1.5/1.5 1
1.5/1 1

2
1/1 1

1.5
1.5/1 1

1

2

3out 1
2

3

4

−0.5
−1.5

−1
1.5

Fig. 2. A WSN P system Π1 that generates the set N − {1, 2}

As shown in Figure 2, a total order for the four rules is set. With this order,
the rules can be referred as r1, r2, r3, r4. According to Definition 11, the spiking
transition matrix MΠ1

for the WSN P system Π1 is

MΠ1
=

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

(8)

The initial configuration is C0 = (3, 2, 1.5). The initial spiking vector is
(0, 0, 0, 1) by Definition 9 and the order of rules.

At step 1, only the output neuron σ3 spikes, while the other two neurons σ1,
σ2 maintain their potentials, because their potentials are greater than their cor-
responding firing thresholds. Neurons σ1 and σ2 receive potentials −1.5 and −1,
respectively. After this step, the configuration vector becomes C1 = (1.5, 1, 0.5).
At step 2, neurons σ1 and σ2 have potentials 1.5 and 1, respectively, which equal
to their corresponding firing thresholds, hence both neurons σ1 and σ2 spike.
Neuron σ1 has two rules r1 : 1.5/1.5 → 1 and r2 : 1.5/1 → 1, and one of them
is non-deterministically chosen. If rule r1 is chosen to be applied, it consumes
potential 1.5 and, at the same time, it receives 1.5 unit of potential from neuron

σ2. Hence, in this step, the net gain of potential in neuron σ1 is 0 and at the
next step neuron σ1 still has potential 1.5. The net gain of potential in neuron
σ2 is also 0 (one unit of potential is consumed by r3 and one unit of potential
is received from neuron σ1), neuron σ3 forgets its potential 0.5 (because it is
less than the threshold 1.5), but gets another potential 0.5 from the other two
neurons (receives potential −0.5 from σ1 and potential 1 from σ2). At the next
step, the numbers of spikes in neurons σ1, σ2, and σ3 are still 1.5, 1 and 0.5,
respectively.

In order to denote the change of numbers of spikes in each neuron, a trans-
action net gain vector is defined.

Definition 12 (Transition Net Gain Vector). Let Π be a WSN P system

with m neurons and n rules, and Ck = (p
(k)
1 , p

(k)
2 , . . . , p

(k)
m) be the kth config-

uration vector of Π. The transition net gain vector at step k is defined as
NG(k) = Ck+1 − Ck.

In order to compute the transition net gain vector, the Hadamard product is
used.

Definition 13 (Hadamard product). Let A and B be m × n matrices. The
Hadamard Product of A and B is defined by [A⊙B]ij = AijBij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.

To avoid confusion, juxtaposition of matrices will imply the “usual” matrix
multiplication, and “⊙” is used for the Hadamard product.

Lemma 2. Let Π be a WSN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck

the kth configuration vector, s(k) the spiking vector at step k, and forg(k) the
forgetting vector at step k. Then the transition net gain vector at step k is

NG(k) = s(k) · MΠ − forg(k) ⊙ Ck. (9)

Proof. Assume that MΠ = [aij]m×n, Ck = (p
(k)
1 , p

(k)
2 , . . . , p

(k)
m), s(k) = (r

(k)
1 , r

(k)
2 ,

. . . , r
(k)
n), forg(k) = (f

(k)
1 , f

(k)
2 , . . . , f

(k)
m), and NG(k) = (g1, g2, . . . , gm). Note

that r
(k)
i is a {0, 1}-value that identifies whether the rules ri would be applied,

f
(k)
i is a {0, 1}-value that identifies whether the neuron σj would forget its po-

tential. Thus, Σn
i=1 r

(k)
i aij − f

(k)
j p

(k)
j represents the total amount of potential

obtained, consumed and forgotten by neuron σj at the kth step. Therefore, the

net gain of neuron σj is gj = Σn
i=1 r

(k)
i aij − f

(k)
j p

(k)
j , for all j = 1, 2, . . . , m. That

is, NG(k) = s(k) · MΠ − forg(k) ⊙ Ck.

Theorem 2. Let Π be a WSN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the kth
configuration vector, s(k) the spiking vector at step k, and forg(k) the forgetting
vector at step k. Then the configuration Ck+1 of Π can be obtained by

Ck+1 = Ck + s(k) · MΠ − forg(k) ⊙ Ck. (10)

Proof. This result follows directly from the preceding lemma.

In Example 2 shown in Figure 2, C0 = (3, 2, 1.5), at step 1 only the rule r4 is
applicable. As the potentials in all the neurons are higher than their threshold,
no neuron forgets its potential. Therefore, s(0) = (0, 0, 0, 1), forg(0) = (0, 0, 0),
the next configuration can be obtained by

C1 = (3, 2, 1.5) + (0, 0, 0, 1)

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

− (0, 0, 0)⊙ (3, 2, 1.5) (11)

That is, C1 = (2, 1, 0.5).
In the next step, rules r1, r3 can be applied, so the spiking vector is (1, 0, 1, 0).

Because the potential in neuron σ3 is less than its threshold, neuron σ3 forgets
its potential, and the forgetting vector is forg(0) = (0, 0, 1). Hence, the next
configuration is

C2 = (2, 1, 0.5) + (1, 0, 1, 0)

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

− (0, 0, 1)⊙ (2, 1, 0.5) (12)

That is, C2 = (2, 1, 0.5).
This example clearly shows how matrix representation and operation can

describe the computation of the system. Such matrix representation is useful for
the simulation of the system in computer.

5 Conclusions and Remarks

In this work, an algebraic representation for SN P systems is introduced. For
every SN P system without delay, configuration vectors are defined to represent
the number of spikes in each neuron; spiking vectors are used to denote which
rules will be applied; a spiking transition matrix is used to describe the skeleton
of system. Such algebraic representation is also extended for another variant of
SN P systems – WSN P systems.

It is not difficult to see that such matrix representation is also suitable for
other variants of SN P systems, such as asynchronous SN P systems [1] and
SN P systems with exhaustive use of rules [4]. The spiking transition matrix
is related to the structure of system only, so the elements of the matrix are
determined initially. During the computation of a system, it is only needed to
decide the spiking vector by checking the current configuration vector and the
regular expressions of rules. In general, such algebraic representation is easy to
be programmed for computer simulation.

The systems considered in this paper have no delay, which corresponds to the
biological feature that neurons have refractory time. It is open how to represent
the computations of SN P systems with delay by matrices.

Acknowledgement

The work of X. Zeng and L. Pan was supported by National Natural Science
Foundation of China (Grant Nos. 60674106, 30870826 and 60703047) and HUST-
SRF (2007Z015A). The work of H. Adorna is supported by Engineering Re-
search and Development for Technology of the DOST, Philippines. The work of
M.A. Mart́ınez-del-Amor and M.J. Pérez-Jiménez is supported by the project
TIN2009-13192 of the Ministerio de Ciencia e Innovación of Spain, cofinanced by
FEDER funds, and the “Proyecto de Excelencia con Investigador de Reconocida
Vaĺıa” of the Junta de Andalućıa under grant P08-TIC04200.

References

1. Cavaliere, M., Egecioglu, O., Ibarra, O.H., Woodworth, S., Ionescu, M., Păun,
G.: Asynchronous Spiking Neural P Systems. Theoretical Computer Science 410,
2352–2364 (2009)

2. Gutiérrez-Naranjo, M.A., Pérez-Jiménez M. J.: Searching Previous Configurations
in Membrane Computing. In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A.
(eds.) Tenth Workshop on Membrane Computing (WMC10). LNCS, vol. 5957, pp,
301–315, Springer, Heidelberg (2010)

3. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta
Informaticae 71(2–3), 279–308 (2006)

4. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems with Exhaus-
tive Use of Rules. International Journal of Unconventional Computing 3, 135–154
(2007)

5. Nelson, J.K., McCormac, J.C.: Structural Analysis: Using Classical and Matrix
Methods, 3rd Edition. Wiley (2003)

6. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences
61(1), 108-143 (2000)

7. Păun, G.: Membrane Computing – An Introduction. Springer-Verlag, Berlin (2002)
8. Păun, G., Rozenberg, G., Salomaa, A. (eds.) Handbook of Membrane Computing.

Oxford University Press (2010)
9. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez M.J.: Spiking Neural

P Systems with Weights. Neural Computation (in press)
10. The P System Web Page: http://ppage.psystems.eu

