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Abstract. We study the computational potential of spiking neural (SN)
P systems. Under various conditions, several intractable problems have
been proven to be solvable by these systems in polynomial or even con-
stant time. We study first their formal aspects such as the input encoding,
halting versus spiking, and descriptional complexity. Then we establish
a formal platform for complexity classes of uniform families of conflu-
ent recognizer SN P systems. Finally, we present results characterizing
the computational power of several variants of confluent SN P systems,
characterized by classes from P to PSPACE.

1 Introduction

Spiking neural P system (abbreviated as SN P system) introduced in [4] is an
abstract computing model inspired by the theory of membrane computing, on
one hand, and spiking neural networks, on the other hand. The computational
power of SN P system has been extensively studied and several intractable prob-
lems such as Subset Sum, SAT, QSAT and others have been shown effectively
solvable by SN P systems under various conditions.

In this paper we intend to establish a platform allowing to characterize the
computational power of SN P systems more precisely. Computational complexity
theory provides basic tools for this task. As the first step, a sequence of formal
prerequisites will be established in Section 3, including the input encoding of
SN P systems, the requirements for halting and providing an output, and finally
the size of the description of an SN P system. These postulates allow to define
polynomially uniform families of confluent SN P systems in Section 4 and to
study their properties. Confluent SN P systems are generally non-deterministic
but each system with a given input has either only rejecting computations or only
accepting computations (and analogously in the case of SN P system without
input).

Then we focus on uniform families of SN P systems. We show the closure
of their polynomial time-restricted complexity classes under complement and



polynomial time reduction. Finally we provide a characterization or limitation
of some variants of uniform families of recognizer SN P system in Section 5.
We also mention the differences between unary and binary encoding and study
their influence on the presented results. We show that some restricted variants of
regular expressions (including the single star normal form) allow to characterize
the class P, while in general their computational power lies between classes NP,
co-NP and PSPACE.

2 Prerequisites

In this section we recall some useful notation and constructions used throughout
the paper. We assume the reader to be familiar with basic language and automata
theory, as well as with elements of the computational complexity theory. We also
refer to [11] for an up-to-date information about membrane computing.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V , the empty string is denoted by λ, and the set of all nonempty strings over V
is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and
a+ instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|. Next
we recall the definition of regular expression to fix the notation.

Definition 1. For a finite alphabet V : (i) λ and each a ∈ V are regular expres-
sions, (ii) if E1, E2 are regular expressions over V , then also (E1)∪ (E2), (E1) ·
(E2), and (E1)

∗ are regular expressions over V , and (iii) nothing else is a regular
expression over V .

The catenation operator · and non-necessary parentheses may be omitted
when writing a regular expression. With each expression E we associate its lan-
guage L(E) defined in a usual way. We call two expressions E1 and E2 equivalent
if L(E1) = L(E2).

Definition 2 ([1]). We say that a regular expression E = E1 ∪ . . .∪En (where
each Ei contains only · and ∗ operators) is in single-star normal form (SSNF)
if ∀i ∈ {1, . . . , n}, Ei has at most one occurrence of ∗.

Lemma 1 ([1]). Every regular expression over one-letter alphabet can be trans-
formed into an equivalent single-star normal form.

This transformation, however, might require an exponential time and the
size of the resulting expression can be exponential with respect to the size of the
original expression.

3 Spiking Neural P Systems

A spiking neural membrane system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:



1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input neuron (resp., output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are
applied as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c,
then the rule E/ac → a; d can be applied. The application of this rule means
consuming (removing) c spikes (thus only k−c remain in σi), the neuron is fired,
and it produces a spike after d time units (as usual in membrane computing,
a global clock is assumed, marking the time for the whole system, hence the
functioning of the system is synchronized). If d = 0, then the spike is emitted
immediately, if d = 1, then the spike is emitted in the next step, etc. If the rule
is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron
is closed (this corresponds to the refractory period from neurobiology), so that
it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then that particular spike is lost). In the step t+d,
the neuron spikes and becomes again open, so that it can receive spikes (which
can be used starting with the step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule
is applicable, and vice versa. Thus, the rules are used in the sequential manner
in each neuron, but neurons function in parallel with each other.

The initial configuration of the system is described by the numbers of spikes
n1, n2, . . . , nm present in each neuron. During a computation, the “state” of the
system is described by both the number of spikes present in each neuron, and
the open/closed condition of each neuron: if a neuron is closed, then we have to
specify when it will become open again.



Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used. With any computation (halting or not) we
associate a spike train, the sequence of zeros and ones describing the behavior
of the output neuron: if the output neuron spikes, then we write 1, otherwise we
write 0. We refer the reader to [13] for more details.

3.1 Unary versus binary input/output

Original works on SN P systems, e.g., [4, 12] focused on SN P systems working the
generating mode. This induced also the following output convention: the output
value was represented as a time interval between two spikes of a designated
neuron. This means that the output values were represented in unary. A similar
convention was later adopted also for input [7].

Unary input/output encoding
An input/output sequence of natural numbers n1, . . . , nk is represented as a
spike train 10n1−110n2−11 . . . 10nk−11.

This unary encoding can be easily transformed to another type of unary
encoding when the input/output values are represented as a number of spikes
accumulated in neurons. Unary encoding is suitable for SN P systems generat-
ing sets. In the case of SN P systems computing functions or solving decision
problems, binary encoding is probably a better choice. It is known that standard
SN P systems can simulate logic gates with unbounded fan-in in a unit time [3]
and, hence, also arbitrary logic circuits in linear time. The unary input/output
convention, however, would decrease their computational power exponentially in
many cases. Assume, e.g., a SN P system performing addition of two arguments
m, n such that m ≤ n. Logic circuits (and also other models as Turing machines)
performs this operation in time O(log n). However, an SN P system with unary
convention needs time O(n) to read/write its input/output.

Binary input/output encoding
An input/output to a SN P system is a binary spike train received/emitted by
a designated input/output neuron.

When dealing with families of SN P systems without input (see Section 4),
one can encode a k-bit value into the structure of neurons of size O(k). If we
adopted unary input conventions, then uniform and non-uniform solutions to
various problems could take exponentially different time, on one hand. On the
other hand, it is known that regular expressions provide SN P systems with a
large part of their power, and to exploit it, one probably needs to accumulate
an exponential number (in terms of size of input) of spikes in a neuron This is
impossible in polynomial time when standard rules and a binary input encoding
is used. It seems that both binary and unary choice lead to possible discrepancies
between uniform and semi-uniform solutions.



We assume the use of binary encoding from now on. Obviously, to switch
from binary to unary encoding, one needs a time exponential with respect to the
size of the original binary string, unless an extended SN P system with maximal
parallelism is used [9].

3.2 Spiking versus halting

In this subsection we focus on SN P systems solving decision problems. Let
us call decision problem a pair X = (IX , θX) where IX is a language over a
finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . The following convention was suggested by some authors: a
SN P systems solving an instance w ∈ IX would halt if and only if θX(w) = 1.
Such a SN P system is called accepting in [7]. However, this convention was
rarely implemented. Instead, many authors demonstrated SN P systems which
always halt and an output neuron spikes if and only if θX(w) = 1, see [3, 6–9]
and others. We add that this convention is more compatible with definitions of
standard complexity classes and also with standard construction of families of
recognizer P systems [14]. Hence we suggest the following definition:

Definition 3. A recognizer SN P system satisfies the following conditions: all
computations are halting, and the output neuron spikes no more than once dur-
ing each computation. The computation is called accepting if the output neuron
spikes exactly once, otherwise it is rejecting.

Observe that the definition is compatible with the variant when the system
is asked to spike at least once in the case of accepting computation. To any such
SN P system we can add another neuron connected to the original output, with
two initial spikes and the rules a → λ and a3 → a; 0 which emits only the first
spike of those received.

Actually, the difference between the halting and spiking convention is not so
great. The following result is demonstrated in [7].

Lemma 2. Given a system Π with standard or extended rules, with or without
delays, we can construct a system Π ′ with rules of the same kinds as those of Π
which spikes if and only if Π halts.

Note that Π ′ does not have to halt if Π does not halt. In the other direction,
we can extend results in [7] as follows:

Lemma 3. Given a system Π with standard or extended rules, with or without
delays, we can construct a system Π ′ with rules of the same kinds as those of Π
which halts if and only if Π spikes.

Proof. We start with the following construction inspired by [7]: let us consider
an SN P system Π (possibly with extended rules), and let σout be its output
neuron. We “triple” this system by:

– tripling the number of spikes present in the initial configuration in each
neuron,



– replacing each rule E/ac → ap; d with 3E/a3c → ap; d, where 3E is a regular
expression for the set {3n |n ∈ L(E)},

– tripling each neuron σc : adding two identical neurons σc′ , σc′′ and adding
new synapses: if σc had originally a synapse to a neuron γ, now each of σc,
σc′ and σc′′ will have synapses to each of γ, γ′ and γ′′.

Let us denote by 3Π the obtained system. In this way the behavior of the
system is not changed, in the sense that each neuron in 3Π spikes if and only if
it spikes in Π.
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Fig. 1. A module emitting dmax + 1 consecutive spikes after the output neuron spikes.

Let dmax denote the maximal delay in any neuron of Π. Let us construct a
module with an incoming synapse from σout which produces dmax+1 consecutive
spikes when obtaining a spike from σout, see Fig. 1. The neuron σhalt will have
an outgoing synapse to each neuron of 3Π. Even if some of these neurons may
be closed due to their refractory period, this period would end after ≤ dmax

steps. Hence, during dmax + 1 steps when the neuron σhalt spikes, each neuron
of 3Π receives a spike, its accumulated number spikes increases to 3n+1, n ≥ 0,
and none of its rules can be applied. However, more spikes from σhalt may come.
Hence, we add to each neuron of 3Π the rule (aaa)∗aa/a → λ. In this way, each
neuron will be kept with 3n + 1 spikes and the system eventually halts after
dmax + 2 steps.

Finally, let us add to 3Π a “perpetuum mobile” circuit of two mutually
interconnected neurons with a single initial spike and the rule a → a; 0 in each,
and with an incoming synapse from σhalt. In this way we ensure that 3Π halts
only if Π spikes. 2

3.3 Descriptional complexity and size of SN P systems

As in the next sections we deal with uniform families of SN P systems, it is
necessary to specify the size of each member of a family. Such a study has been
already presented in [8]. The size of a system Π is based on the number of bits
necessary to its full description. Let m be the number of neurons, N be the



maximum natural number that appears in the definition of Π, R the maximum
number of rules which occur in its neurons, and S the maximum size required
by the regular expressions in succinct form that occur in Π. (The succinct form
means that an expression an is represented just by O(log n) bits.) Then the total
size of description of Π is polynomial with respect to m, R, S and log N.

Some authors [7, 9, 13] distinguish between the size of a SN P system and the
size of its description. They point out that the initial number of spikes in neurons
or the length of (unary) strings in regular expressions can be exponential with
respect to the size of description of the system. They conclude that an exponen-
tial time might be needed to construct such a SN P system. Here we prefer a
different approach, based on the fact that if there were a physical implementa-
tion of SN P systems, spikes in neurons would be most likely represented not
as physical objects but as an electric potential as in biological neural networks.
Also in recent implementations in silico is the number of spikes represented as
a binary value. Therefore, we see no necessity to assume an exponential time
effort to construct such a SN P system, and we do not distinguish between the
size of a SN P system and the size of its description.

4 Families of recognizer SN P systems

Standard SN P systems were shown to be universal already in the introductory
paper [4]. However, as demonstrated in [10], no standard spiking neural P system
with a constant number of neurons can simulate Turing machines with less than
exponential time and space overheads. This is due to the unary character of
its unlimited memory - spikes accumulated in neurons. Therefore, to achieve
computational effectiveness, many authors have used families of SN P systems
such that each member of a family solves only a finite set of instances of a
given size. In this section we propose a formal specification for families of SN P
systems. All definitions in this section follow closely [14] which studies families
of P systems working with objects.

Definition 4. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) : n ∈
N}) of recognizer SN P without input (resp., with input) is polynomially uni-
form by Turing machines if there exists a deterministic Turing machine working
in polynomial time which constructs the system Π(w) (resp., Π(n)) from the
instance w ∈ IX (resp., from n ∈ N).

In the sequel we will for short denote such a family just as uniform. For families
of SN P systems with input, the selection of a proper member of the family and
its input is done as follows.

Definition 5. Let X = (IX , θX) be a decision problem, and Π = {Π(n) : n ∈
N} a family of recognizer SN P systems with input membrane. A polynomial
encoding of X in Π is a pair (cod; s) of polynomial-time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number (obtained
by means of a reasonable encoding scheme) and cod(w) is a binary string – an
input of the system Π(s(w)).



The common case is that s(w) is the size of w. Since Definition 4 and 5
conform those in [14, 15] we can adopt the following result whose proof in [15] is
not affected by a different type of P system.

Lemma 4. Let X1, X2 be decision problems, r a polynomial-time reduction from
X1 to X2, and (cod; s) a polynomial encoding of X2 in Π. Then, (cod ◦ r; s ◦ r)
is a polynomial encoding of X1 in Π.

Let R denote an arbitrary type of recognizer SN P systems. The following
definitions are inspired by [14] and [7].

Definition 6. Let f : N → N be a constructible function. A decision problem X
is solvable by a family Π = {Π(w) : w ∈ IX} of recognizer SN P systems of type
R without input in time bounded by f , denoted by X ∈ SN∗

R(f), if the following
holds:

– The family Π is polynomially uniform by Turing machines.
– The family Π is f -bounded with respect to X ; that is, for each instance

w ∈ IX , every computation of Π(w) performs at most f(|w|) steps.
– The family Π is sound with respect to X ; that is, for each w ∈ IX , if there

exists an accepting computation of Π(w), then θX(w) = 1.
– The family Π is complete with respect to X ; that is, for each w ∈ IX , if

θX(w) = 1, then every computation of Π(w) is an accepting computation.

Note that the SN P system solving an instance w can be generally nonde-
terministic, i.e, it may have different possible computations, but with the same
result. Such a P system is also called confluent.

The family Π is said to provide a semi-uniform solution to the problem X.
In this case, for each instance of X we have a special P system. Specifically, we
denote by

PSN∗
R =

⋃

f polynomial

SN∗
R(f)

the class of problems to which uniform families of SN P systems of type R
without input provide semi-uniform solution in polynomial time. Analogously we
define families which provide uniform solutions solutions to decision problems.

Definition 7. Let f : N → N be a constructible function. A decision problem X
is solvable by a family Π = {Π(n) : n ∈ N} of recognizer SN P systems of type
R with input in time bounded by f , denoted by X ∈ SNR(f), if the following
holds:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) of X in Π such that:

• The family Π is f -bounded with respect to X ; that is, for each instance
w ∈ IX , every computation of Π(s(w)) with input cod(w) performs at
most f(|w|) steps.



• The family Π is sound with respect to (X, cod, s); that is, for each
w ∈ IX , if there exists an accepting computation of Π(s(w)) with in-
put cod(w), then θX(w) = 1.

• The family Π is complete with respect to (X, cod, s); that is, for each
w ∈ IX , if θX(w) = 1, then every computation of Π(s(w)) with input
cod(w) is an accepting computation.

The family Π is said to provide a uniform solution to the problem X. Again,
we denote by

PSNR =
⋃

f polynomial

SNR(f)

the class of problems to which uniform families of SN P systems of type R
with input provide uniform solution in polynomial time. Obviously, for any con-
structible function f and a class of SN P systems R we have

SNR(f) ⊆ SN∗
R(f) and PSNR ⊆ PSN∗

R.

We use the following notation to describe a specific type R of SN P systems:
−reg for systems with regular expressions of the form an, n ≥ 1, −del for systems
without delays, and ssnf for systems with regular expressions in the single-star
normal form. When R is omitted, the standard definition of SN P systems is
used.

Theorem 1. The classes SNR(f) and SN∗
R(f) are closed under the operation

of complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Proof. It is necessary to show that for each confluent SN P system Π there exists
a system Π ′ whose computation is accepting if and only if the computation of
Π is rejecting. Assume the construction described in Section 4, Fig. 6 in [7]. It
presents a module which, when added to any SN P system Π, emits a spike only
after the system Π halts. The provided construction works for many variants of
SN P systems (i.e., with or without delay, without regular expressions and also
for extended SN P systems).

Note that this module contains a set of rules ak → a; 0 for all k ∈ K, where
K is the set constructed as follows. For each neuron σi of Π, 1 ≤ i ≤ n (where
n is the degree of Π) denote

Pi =
⋃

1≤i≤n

{p |E/ac → ap; d is a rule of σi},

and

K =

{

n
∑

i=1

pi | pi ∈ Pi

}

− {0}. (1)

Hence K contains sums of all possible n-tuples containing one element of each
Pi, hence the number of these n-tuples may be exponential with respect to n.
However, in such a case many of these sums will be equal. Let

pmax = max{p |E/ac → ap; d is a rule of σi},



then each sum on the right-hand side of (1) will be bounded by npmax. Therefore,

K ⊆ {1, 2, . . . , npmax}

and hence the size of K is linear with respect to n. However, in the case of
extended SN P systems with pmax ≫ n, the size of K could be exponentially
greater than the size of Π which is polynomial with respect to n log pmax (see
Section 3.3).

Let us extend the module described at Fig. 6 in [7] as follows. Let σout be the
output neuron of this module. Let a spike emitted from σout after halting of the
system Π feed two new neurons, each with a rule a → a; 0. Finally, add a new
neuron σout′ with incoming synapses from these two neurons, another synapse
from the original output neuron of Π, and with a rule a2 → a; 0. Let σout′ be
the output neuron of Π ′. Note that σout′ spikes if and only if Π halts and its
output neuron σout does not spike which concludes the proof. 2

Note that the above proof holds also for a certain subclass of extended SN P
systems with pmax bounded from above by poly(n). This condition guarantees
that the size of the complementary system is polynomial with respect to the
size of the original system, hence the family remains polynomially uniform by
Turing machines. It is an open problem whether an analogous result holds for
unrestricted extended SN P systems.

Corollary 1. The classes PSNR and PSN∗
R are closed under the operation of

complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Theorem 2. Let R be an arbitrary class of SN P systems. Let X and Y be
decision problems such that X is reducible to Y in polynomial time. If Y ∈
PSNR (respectively, Y ∈ PSN∗

R), then X ∈ PSNR (resp., X ∈ PSN∗
R).

Proof. We prove the case of SN P systems with input, adopting the technique
used in [15], the case without input is analogous. Let Π by a family providing
uniform solution to the problem Y. By its definition, let p be a polynomial and
(cod, s) a polynomial encoding of Y in Π such that Π is p-bounded with respect
to Y and sound and complete with respect to (Y, cod, s).

Let r : IX → IY be a polynomial time reduction from X to Y, hence there is
a polynomial q such that for each w ∈ IX , |r(w)| ≤ q(|w|). Observe that:

– By Lemma 4, (cod ◦ r; s ◦ r) is a polynomial encoding of X in Π.
– Π is (p ◦ q)-bounded with respect to X since for each w ∈ IX , every com-

putation of Π(s(r(w))) with input cod(r(w)) performs at most p(|r(w)|) ≤
p(q(|w|)) steps.

– Π is sound and complete with respect to (X, cod ◦ r, s ◦ r) since for each
w ∈ IX ,
• if there exists an accepting computation of Π(s(r(w))) with input

cod(r(w)), then θY (r(w)) = 1 and, by reduction, also θX(w) = 1,
• if θX(w) = 1, then also θY (r(w)) = 1 and hence every computation of

Π(s(r(w))) with input cod(r(w)) is an accepting computation.

Consequently, X ∈ SNR(p ◦ q) and hence also in PSNR. 2



5 Efficiency of basic classes of SN P systems

As we have already mentioned, any standard SN P system cannot simulate Tur-
ing machine with less than exponential time and space overheads [10]. Therefore,
we focus on families of SN P systems providing stronger computational power
in the rest of this section.

We start with a simple variant of SN P systems with restrictions imposed
on their regular expressions. It was shown already in [2] that SN P systems
without delays and with all regular expressions of the form an, n ≥ 1, are
computationally universal. Results in [8] together with Theorems 1 and 4 in [16]
imply the following statement.

Theorem 3. PSN−reg,−del = PSN∗
−reg,−del = PSNssnf = PSN∗

ssnf = P

These results show that families of standard confluent SN P systems can
reach the computational power beyond P only with the aid of complex regular
expressions. Whenever we release the condition of single star normal forms in
regular expressions, the computational power of SN P systems reaches the class
NP.

Theorem 4. (NP ∪ co-NP) ⊆ SN∗
−del(2)

Proof. A part of the statement concerning NP follows by Proposition 1 in [8]
which presents a construction of a standard deterministic SN P system solving
the problem Subset Sum in one step. By Theorem 1, also the complement of
this problem (which is co-NP-complete) can be solved in the same way. Actually,
in this case it is enough to add two more neurons which add one more step of
computation. 2

Corollary 2. (NP ∪ co-NP) ⊆ PSN∗
−del

Note that Theorem 4 and Corollary 2 hold only for succinct (binary) repre-
sentation of unary strings in regular expressions and also initial number of spikes
in neurons.

Indeed, if one assumes unary representation of regular expressions and of
number of spikes in neurons, then uniform families of standard confluent SN P
system cannot solve NP-complete problems unless P = NP. Recall that any
confluent SN P system with simple regular expressions can be simulated by a
deterministic Turing machine in polynomial time [8]. With the unary representa-
tion, one can extend the result also to general regular expressions: an expression
E can be transformed into the equivalent NFA in polynomial time. Then it is
decidable in polynomial time with respect to the size of E and k, whether the
NFA accepts the string ak representing k spikes in a neuron.

Also, it is an open problem whether a result analogous to Corollary 2 holds
for standard confluent SN P systems with input. We conjecture that this can be
achieved only with the aid of maximal parallelism or extended rules which would
allow to transform rapidly a binary input to an exponential number of spikes



present in some neuron as in [9]. Other known solutions to NP-hard problems
with families of SN P systems use various extension of the standard definition, as
non-confluent and non-deterministic SN P systems [7, 8] or exponential number
of neurons [3, 6].

On the other hand, we know no better upper bound on the power of standard
confluent families of SN P systems with unlimited regular expressions yet than
PSPACE. We need the following lemma first:

Lemma 5. Matching of a regular expression E of size s in succinct form over a
singleton alphabet with a string ak can be done on a RAM in non-deterministic
time O(s log k).

Proof. Assume that we have the syntactic tree of the expression E at our disposal
(its parsing can be done in deterministic polynomial time). We treat the sub-
expressions of the form an as constants and assign them a leaf node of the tree
with the value n. The matching algorithm works as follows:

– Produce non-deterministically a random element of L(E) in succinct form
by a depth-first search traversal of its syntactic tree. Start with the value 0
and evaluate recursively each node depending on its type as follows:
• leaf node containing a constant: return the value of the node;
• catenation: evaluate both subtrees of this node and add the results;
• union: choose non-deterministically one of the subtrees of this node and

evaluate it;
• star: draw a random number of iterations x within the range 〈0, k〉, and

if x > 0, evaluate the subtree starting in this node and multiply the
result by x, otherwise return 0.

– Compare the drawn element of L(E) with ak whether they are equal.

Whenever during the evaluation the computed value exceeds k, the algorithm
halts immediately and reports that ak does not match L(E). This guarantees
that the number of bits processed in each operation is always O(log k).

Each of the elementary operations described above can be performed in con-
stant time on RAM with unit instruction cost, except the multiplication which
requires O(log k) time. Total number of tree-traversal steps is O(s). 2

Theorem 5. PSN∗ ⊆ PSPACE

Proof. It has been shown in [8] that any confluent SN P system with simple
regular expressions can be simulated by a deterministic Turing machine in poly-
nomial time. Concerning general regular expressions, by Lemma 5 their matching
can be done in non-deterministic polynomial time, and since NP ⊆ PSPACE,
also in deterministic polynomial space. Indeed, if one replaces the random selec-
tion in the proof of Lemma 5 by depth-first-search of all configurations reachable
by making nondeterministic choices, one gets a deterministic algorithm running
in polynomial space and exponential time.

Denote by s the size of description of a SN P system Π. Observe that the
total number of bits to describe spikes in all neurons after t steps of computation



is O(s+ t) even in the case of maximal parallelism or exhaustive rules. The total
size of all regular expressions in Π is O(s). Hence, by Lemma 5, the simulation
of Π performs in polynomial space with respect to s + t. 2

Finally, let us note that a deterministic solution to PSPACE-complete prob-
lems QSAT and Q3SAT with families of SN P systems with pre-computed re-
sources (i.e., with exponential amount of neurons) have been shown in [5].

6 Conclusion

We have introduced uniform families of standard confluent SN P systems and
studied their computational power under polynomial time restriction. Several
factors were focused on, influencing the obtained results: the input encoding,
the form of output (halting versus spiking), the descriptional complexity, the
form of regular expressions.

It was shown that, with the restriction of regular expressions to the single
star normal form, these families of SN P systems characterize the class P. It
remains an open problem whether this condition can be further relaxed.

When complex regular expressions are allowed (but note that the operation *
is not necessary), these families are capable to solve NP-complete problems in
constant time. The succinct representation of regular expressions and spikes is
a necessary condition to achieve this computational potential (unless P=NP).
Finally, the power of these families under polynomial time restriction is bounded
from above by PSPACE.

The results concerning intractable problems were shown for the case of fam-
ilies without input. It is very likely that the same result for the case of families
with input is possible only when extended rules and/or maximal parallelism are
allowed. However, there is no formal proof known yet.
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