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Abstract. In biological processes, intrinsic noise, spatial heterogeneity
and molecular crowding deeply affect the system dynamics. The classic
stochastic methods lack of the necessary features needed for the descrip-
tion of these phenomena. Membrane systems are a suitable framework
to embed these characteristics; in particular, the variants of τ -DPP and
Sτ -DPP allow the modelling and stochastic simulations of multi-volume
biochemical systems, in which diffusion and size of volumes and chemi-
cals are taken into account improving the description of these biological
systems. In this paper we show, by means of two models of reaction-
diffusion and crowded systems, the correctness and accuracy of our sim-
ulation methods.

1 Introduction

Membrane systems [29] (also called P systems) have been recently exploited for
the modelling of biological systems and for the investigation of their dynamical
properties (we refer the reader to [32] for an updated bibliography). There are
several important features that makes P systems suitable for the modelling of
biological systems: a membrane structure is used to describe a compartmental-
ized environment, in which membranes are organized according to a specified
hierarchy. Inside different membranes, different sets of objects (e.g. molecular
species) can be defined along with sets of multiset rewriting rules (e.g. chemical
reactions) to describe the evolution of the system.

On the other hand, there are some characteristics of the basic definition of
P systems which are not adequate for the description of the biological reality.
Among others, the maximal parallelism of the rules application, which consists in
the application of all rules by consuming all objects present in the system, or the
non deterministic selection of concurrent rules, are not suitable to the description
of the stochasticity usually present in biological systems where some molecular



species occur in small quantities. In order to achieve a better description of bi-
ological systems, the variant of dynamical probabilistic P systems (DPPs) [31]
has been introduced. In DPPs, the maximal parallelism has been mitigated by
assigning probabilities to the rules, and these values vary according to the sys-
tem state. By exploiting these values, it is possible to provide a description of
the system’s dynamics, that is, DPPs allow to reproduce the stochastic varia-
tions of the elements (i.e. chemical species) occurring in the system. However,
this description is only qualitative, in the sense that an effective (physical) time
streamline cannot be directly associated to the evolution steps of the system.

τ -DPP has been introduced to overcome the limitations of DPPs, providing
a quantitative description of a system dynamics, by extending the single-volume
algorithm of tau-leaping [8].

In order to correctly describe the behaviour of a system, τ -DPP runs in
parallel inside each volume. A modified version of the tau-leaping procedure
presented in [8] is exploited to compute the length of the step τ . In this novel
version of the simulation algorithm, the least value for the time increment, among
those computed inside each volume, is used to sample the number of reactions
to execute (as in the original tau-leaping algorithm). Thanks to this “common”
time increment, shared by all volumes, the simulation is synchronized at each
step, allowing the correct passage of the molecules involved in communication
rules.

A novel variant of τ -DPP, presented in [11], has been introduced to con-
sider the size of volumes and objects involved in a system, in order to better
describe systems where the “space” play an important role in the dynamics,
such as crowded systems. This variant of our multi-volume stochastic simulation
algorithm, called Sτ -DPP, is based on the same modelling framework of τ -DPP,
and it exploits the same strategy for the simulation of the system’s behaviour.

τ -DPP and Sτ -DPP algorithms can be used in the modelling and simula-
tion of reaction–diffusion (RD) systems and crowded environments. RD systems
are mathematical models used to describe those chemical systems for which the
spatial distribution of chemicals influence the overall dynamics. The standard
methods used to describe such systems are based on partial differential equa-
tions; however, when the intrinsic fluctuations of the chemical system play a
major role in the dynamic, as in the case of many systems of interest for bi-
ology, a stochastic approach is more suitable. The intracellular environment is
considered crowded since it is characterised by the presence of high concentra-
tions of soluble and insoluble macromolecules; therefore, the classic approaches
which consider molecules as points (without specifying their size), are no longer
adequate. Under crowded conditions, the rate of some cellular processes can be
increased or decreased, according to the “free space” in the system. By using
Sτ -DPP, it is possible to consider the size of reaction volumes and chemicals,
achieving a correct description of a crowded system by computing the reactions
probability according to the free space occurring in a volume.

In this paper we show the simulation of the heat equation by means of τ -DPP,
proving its correctness in the simulation of diffusive processes. To this aim, we



compare the results of the stochastic simulations with the exact solution of the
heat equation. Afterwards, we present the results of the simulation of a crowded
environment, showing how macromolecules affect the reactions probability and
the overall system dynamics.

The paper is organised as follows. In the next section we give a description
of spatial heterogeneity and macromolecular crowding in living cells, and we
briefly present the classic computational approaches used in the description of
these phenomena; in Section 3, we describe the stochastic simulation algorithms
we have developed for the modelling and description of multi-volume systems. In
order to validate our approaches for the simulation of RD systems and crowded
environments, we present in Section 4 the results obtained from the simulation
of the heat equation, and in Section 5 the simulation of a biological system
with macro molecules that induce crowding effects. We conclude with some re-
marks about the results of the presented systems and with some possible future
extensions.

2 Spatial heterogeneity and macromolecular crowding in
living cells

Living cells are very far from the homogeneous and diluted compartment that
is often used for their modelling. These requirements can be considered satisfied
in many cases without taking them explicitly into account; however, there are
several processes in which the effects of spatial heterogeneity (due to diffusive
processes) and crowding (caused by the presence of macromolecules) must be
considered in order to capture the correct system dynamics.

2.1 Reaction-diffusion systems

RD systems are mathematical models used to describe those chemical systems for
which the spatial distribution of chemicals influences the overall dynamics. The
standard approach exploits a continuous time and space domain description of
the systems, such as the partial differential equations, where the mass transport,
the chemical kinetics and the conservation laws, together with the boundary
conditions, are embedded within the same set of equations that can be solved
analytically or numerically.

When the intrinsic fluctuations of the chemical system play a major role in
the dynamics, as is the case for many systems of interest for Biology, a master
equation approach is more suitable[4, 20]. The chemical master equation formu-
lation adopts a mechanistic perspective on the chemical system describing it as
a sequence of collision events among molecules. Each of these scattering events
can lead either to a new compound (reactive collision) or to an elastic scattering
(diffusive collision) which does not alter the chemical species distributions but
only the particles speed and direction. Which of the two collisions pathways will
be followed by each scattering event is determined by the energy involved in
the process: if this energy exceed the Arrhenius threshold (activation energy)



then the two molecules will react to form the new compound. According to this
scheme it is possible to separate the RD process into a free flight phase followed
by the interaction phase. The resulting dynamics is the superposition of a brow-
nian motion (random walk) with an interaction/reaction process. The existence
of an activation energy imposes that the diffusive events are the most probable
ones, if the environment in which the reactions take place is homogeneous, this
picture corresponds to a well stirred reactor and the dynamics can be tracked
by means of a stochastic simulation algorithm such as the Gillespie’s one [20].

A natural extension of the master equation approach to heterogeneous (space)
systems consists of dividing the original volume V into smaller sub-volumes Vv,
each one with a characteristic length h (Vv = hd, being d ∈ {1, 2, 3} the spatial
dimensions), such that each of these sub-volumes can be considered homoge-
neous. Moreover, it is possible to define a mean jump frequency D̃i,v [4] for each
chemical species Si in the sub-volume Vv, in order to connect the microscopic de-
scription of the master equation with the macroscopic Fick’s diffusion coefficient
Di

D̃i,v =
2d
h2
v

Di, (1)

and to verify if the well stirred condition still holds. The latter requirements
is equivalent to impose in each sub-volume that the diffusion time τD u h2

2dD
is much smaller then the reaction waiting time τR [5], condition that should be
also granted for the molecules diffusing across the sub-volumes. This observation
allows to define the expression for the stochastic kinetic constant associated to
the “diffusive” reactions

cD =
D

h2
(2)

that mimic the molecules movement from one sub-volume to another.

2.2 Macromolecular crowding

The intracellular environment is characterised by the presence of high concentra-
tions of soluble and insoluble macromolecules [16, 27, 38]. This medium is termed
“crowded”, “confined” or “volume-occupied”, rather than “concentrated”, be-
cause single molecular species may occur at low concentrations, but all species
taken together occupy a considerable fraction of the total volume [28].

The term “macromolecular crowding” refers to the non-specific influence of
steric repulsions (i.e., a consequence of the mutual impenetrability of molecules
due to the Pauli exclusion principle) on molecular processes that occur in highly
volume-occupied media [33].

Due to macromolecular crowding, biochemical, biophysical, and physiological
processes in living cells may be quite different from those under idealized condi-
tions [37], and order-of-magnitude effects of crowding have been demonstrated
by both experimental and theoretical works on a broad range of processes [33].
All these effects are related to variations occurring in macromolecular thermo-
dynamics activities [37] and diffusion [15].



To understand whether a crowded medium will increase or decrease the rate
of a process, it is important to take into account the changes induced by the
process itself on the available volume inside the system. Among others, binding
of macromolecules to one another, folding of proteins and nucleic-acid chains into
more compact shapes, the formation of aggregates, are all processes stimulated
in crowding conditions due to the induced net increase of the available volume
[15].

The other main effect of macromolecular crowding is related to anomalous
diffusion. In crowded media, the mean squared displacement, 〈r2〉, of a solute
particle in three dimensions is related to the diffusion coefficient D, but it is no
longer linearly proportional to the time t:

〈r2〉 = 6Dtα (3)

If α < 1, the diffusion is called anomalous subdiffusion; on the other hand, if
α > 1 the diffusion is called anomalous superdiffusion; if α = 1 the diffusion
is normal. Crowding can reduce the rate of diffusion (according to the size of
the diffusing molecule and to the degree of volume occupancy) and can lead to
anomalous diffusion [3]. Large reductions in solute diffusion are probably indi-
cators of interactions between the solute and cellular components, such as mem-
branes [13]. Therefore, the rates of diffusion-controlled biochemical processes –
mainly affected by the diffusion of the reactants – will be reduced in crowded me-
dia. The decrease in the diffusion rates due to crowding may also lead to complex
phenomena like fractal kinetics (anomalous reaction orders and time-dependent
reaction rate coefficients [24]) and spatial segregation of molecules [6]. In the
latter case, as a consequence of the increased probability of recollision, crowding
will determine the increase of the reaction rate of processes characterised by a
low reaction probability [23].

2.3 Classic computational approaches

Computational approaches aimed at studying spatially heterogeneous systems
and molecular crowding have to deal with the tabulation of spatial position of
particles as a function of time. Several computational frameworks can be used
to analyse such kind of systems [36]; we report hereafter the classic and most
used methods.

Molecular dynamics (MD) simulations provide detailed trajectories, but they
are computationally too expensive for simulating systems formed by a large num-
ber of atoms or with time scales above µs. MD has only been used in problems
involving time-scales of ns and space-scales of tens of nm.

Brownian dynamics (BD) is a particle-based stochastic approach used to
describe the time and space motion of molecules. Time and space are continuous,
and noise is modelled by means of the Langevin equation. Crowded media can be
explicitly described since it is possible to represent crowder molecules. However,
as the number of particle collisions increases, the BD simulations demands a very



high computational cost. Examples of methodologies based on BD are Green’s
function reaction dynamics algorithm [39], Smoldyn [2] and MCell [35].

Partial differential equations (PDEs) are a continuous and deterministic ap-
proach. PDEs represent the classical method used to model RD systems. Each
equation relates the time variation of a species concentration to its space varia-
tion and to the other species concentration. Crowding effects can be implicitly
represented acting on diffusion coefficients (e.g., by lowering their values) and
kinetic constants (e.g., by increasing their values). PDEs are usually solved us-
ing numerical methods (only in a few case the analytical solution is available);
moreover, as the time-step and the sub-volume size (the space domain is usu-
ally divided in a number of elements) are reduced, the solutions becomes more
accurate while the computational effort increases.

Cellular automata (CA) consist of a grid of cells (in any number of dimen-
sions), each cell has a finite set of states, and it evolves according to the neigh-
bours state. CA can be used to simulate RD systems at both microscopic and
mesoscopic scales, depending on the number of molecules associated with each
cell of the lattice. Crowding can be explicitly represented by considering crow-
der molecules or fixed barriers. For instance, people of the CyberCell project
modelled a virtual cell membrane using discrete automata [7].

Lastly, spatial approaches based on Gillespie’s method extend the stochastic
simulation algorithm [21] in order to represent an RD system as a set of a
well-stirred chemical reactors that communicate particles. The next sub-volume
method [14], spatial τ -leaping [34] and the method described in [5] are algorithms
that follow this approach; MesoRD [22] and SmartCell [1] are popular simulators.
As molecules are considered point particles, these tools cannot be utilised to
describe molecular crowding.

3 Multi-volume stochastic simulation algorithms based
on P systems

The standard algorithms for the simulation of biochemical systems (see, for in-
stance, the stochastic simulation algorithm (SSA) [18] and the next reaction
method [17]) have been developed for the description of the exact behaviour of
systems enclosed in a single volume. Recently, novel approaches have been intro-
duced to simulate spatial heterogeneity, as in the next sub-volume method [14]
or in the binomial τ -leap spatial stochastic simulation algorithm [25]. By using
these methods, the volume of a system is divided into a number of separated
sub-volumes, whose size is small enough to satisfy the requirements of the SSA,
so that the probabilities of the reactions and the diffusive events occurring inside
each sub-volume can be properly described.

A limitation of these stochastic methods consists in the fact that the size
of chemicals and of the volumes in which reactions take place is not considered
during the simulation of the system dynamics. To overcome the issues related to
spatiality and size of chemicals, we have recently introduced two multi-volume
stochastic algorithms called τ -DPP [9] and Sτ -DPP [11], which will be presented



in the next subsections. These methods combine a variant of P systems called
dynamical probabilistic P systems [31] with the simulation method of tau-leaping
[8]: the first one is suitable for the description of chemical, biological and eco-
logical systems, and can be easily applied to the modelling and simulation of
reaction-diffusion systems; the second one can be used for the simulation of
crowded systems, since the size of chemicals and volumes is taken into account
during the description of the system behaviour.

There exist different simulation methods based on P systems: among others
we recall here the multicompartmental Gillespie’s algorithm [30]. This algorithm
is used to simulate systems composed by many volumes (also called compart-
ments), exploiting the Gillespie’s procedure. In particular, the direct method is
used for the computation of the time τ and the index of the next reaction to
execute within each compartment. This information is stored in a list which is
updated at each iteration, modifying the values related to the compartments
affected by the executed reaction. This strategy is very similar to that of the
next subvolume method [14], with the difference that the multicompartmental
Gillespie’s algorithm does not use a particular data structure such as a heap or
an indexed queue to efficiently handle compartments information.

In the description of biochemical systems modelled by means of this method,
the so called boundary rules are exploited. Such kind of reactions are used to
capture the features of the communication and the transformation of molecules.
In particular, the authors consider special cases of boundary rules which involve
molecules occurring in different compartments, though it is not very clear how
Gillespie’s theory for single volume systems can be used to describe the propen-
sity functions of reactions that are simultaneously active in two compartments,
nor in which compartment this information is used to compute the value of τ .

τ -DPP

τ -DPP [11] is a computational method which can be used to describe and perform
stochastic simulations of complex biological or chemical systems. The “complex-
ity” of the systems that can be managed by means of τ -DPP, resides both in
the number of the (chemical) reactions and of the species involved, and in the
topological structure of the system, that can be composed by many volumes.
For instance, cellular pathways involving several spatial compartments (as the
extracellular ambient, the cytoplasm, the nucleus, etc.), or multicellular systems
like bacterial colonies, or multi-patched ecological systems as metapopulations,
are all examples of complex systems that could be investigated with τ -DPP.

The correct behaviour of the whole system is achieved by letting all volumes
evolve in parallel, and by using the following strategy for the choice of time
increments. At each iteration of τ -DPP, we consider the current state of each
volume (determined by the current number of molecules), and we calculate a
time increment independently in each volume (according to the standard tau-
leaping algorithm [8]). Then, the smallest time increment is selected and used to
evaluate the next-step evolution of the entire system. Since all volumes locally
evolve according to the same time increment, τ -DPP is able to correctly work



out the global dynamics of the system. Moreover, by adopting this procedure,
the simulated evolutions of all volumes get naturally synchronized at the end
of each iterative step. The synchronization is also necessary – and exploited
together with a parallel update of all volumes – to manage the communication of
molecules among volumes (i.e., diffusive events), whenever prescribed by specific
(communication) rules.

The system is defined by means of a set of N volumes organised according
to the hierarchy specified by the membrane structure. The state of the whole
system is characterised by all multisets Mv occurring inside each volume Vv
(1 ≤ v ≤ N).

Inside the volumes, the sets of rules R1, . . . , RN are defined along with the
sets of stochastic constants C1, . . . , CN .

Each volume Vv can contain two different kinds of rules, termed internal and
communication rules. An internal rule describes the modification, or evolution,
of the objects inside the single volume where it is applied, while a communication
rule sends the objects from the volume where it is applied to an adjacent volume
(possibly modifying the form of these objects during the communication step).

More precisely, internal rules have the general form α1S1 + α2S2 + · · · +
αmSm → β1S1 + β2S2 + · · · + βmSm, where S1, . . . , Sm belong to the set of
distinct object types S, and α1, . . . , αm, β1, . . . , βm ∈ N. For instance, S1, . . . , Sm
can correspond to molecular species, and, in this case, α1, . . . , αm, β1, . . . , βm
represent stoichiometric coefficients. The objects appearing in the left-hand side
of the rule are called reagents, while the objects on the right-hand side are called
products. Note that, usually, we will consider the case where (at most) three
objects appear in the reagents group. The rational behind this is that we require
biochemical reactions to be (at most) of the third-order, since the simultaneous
collision and chemical interaction of more than three molecules at a time, has
a probability to occur close to zero in real biochemical systems. Moreover, the
interaction among more than three molecules can be modelled by using a set of
successive reactions with lower order. In what follows, we will refer to rules or
reactions without distinction.

When dealing with communication rules inside a volume, besides defining
the sets of reagents and products, it is necessary to specify the target volume
where the products of this rule will be sent3. Formally, a communication rule
has the form4 α1S1 + α2S2 + · · · + αmSm → (β1S1 + β2S2 + · · · + βmSm, tar),
where S1, . . . , Sm ∈ S are distinct object types, α1, . . . , αm, β1, . . . , βm ∈ N, and
tar represents the volume where the products of the reaction diffuse.

A complete an extensive description of the τ -DPP algorithm and some ap-
plications can be found in [9, 10].

3 This definition can be easily extended in order to assign a different target volume to
each object appearing in the set of products.

4 The condition that at most three objects appear as reagents is usually required also
for communication rules.



Sτ -DPP

Sτ -DPP [11] is obtained combining the structure definition of tissue P systems
[26] with the simulation strategy used in τ -DPP [9]. Here, nodes are arranged
in a tissue–like fashion, but each of them can have a complex internal hierarchy,
organised in a tree–like structure. Moreover, in this new variant we consider sizes
for both membranes and objects, and the rules defined inside each membrane will
be enabled only in the case there is sufficient free space in the membrane where
the rule is applied, for instance, to “create” new objects or to receive objects
from other volumes. The size considered here can be used in the modelling and
simulation of biochemical systems where diffusive processes play an important
role, and it is necessary to avoid the unlimited accumulation of objects in a
region of finite size.

In order to correctly describe the hierarchy of complex nodes of the system
we first need a graph representing the topology of the membranes. In particular,
this graph can have undirected edges to indicate that two membranes are placed
at the same hierarchical level (as in the standard definition of tP systems [26]).
On the other hand, directed edges of the graph are used to denote that the
“source” membrane contains the “target” membrane.

A second directed graph is needed to represent the communication channels
among membranes. Clearly, the arrows of the edges indicate the direction of
the (permitted) flow of objects between different compartments. Note that, this
communication graph can contain edges that are not indicated in the graph which
describes the membrane structure. The meaning of these particular edges is to
represent communication channels that connect non adjacent membranes. Using
these arcs, it is then possible to create privileged pathways of communication
between membranes.

The features of Sτ -DPP can be exploited to represent (among other real life
systems) reaction–diffusion systems [12]. In this case, the membrane structure
can be used to represent a reaction volume as the composition of a number of
finite size sub-volumes, and the communication graph will describe the diffusion
directions through the system.

With respect to the definition of τ -DPP, when using this simulation strategy
we need to specify additional information about the system under investigation.
First, we need to provide the sizes of the volumes composing the system and of
the molecular species occurring within them. Second, we have to compute the
initial free space of each volume.

Given the internal state Mv of a membrane Vv together with size sS1 , . . . , sSm

of the species, and the size sV1 , . . . , sVN
of the volumes, it is possible to define

the occupied volume in Vv as:

O(Vv) =
m∑
i=1

(mi · sSi
) +

∑
Vl∈aT (Vv)

sVl

wheremi represents the amount of the species Si and aT (Vv) is the set of volumes
contained within the volume Vv. Hence, it is possible to define the value of the



free space in Vv as:
F (Vv) = sVv

−O(Vv)

Internal and communication rules are defined as in τ -DPP, but, at each
rule execution (internal or communication), apart from updating the molecular
amounts of the species involved in the reaction, also the free space value has to be
updated. The update operation adds to the free space value the “volume” of the
objects consumed or sent by the rule and subtracts the “volume” of the objects
produced by the rule or received from other membranes. In particular, after
the execution of an internal rule, the free space in Vv is updated as F (Vv) =
F (Vv) −

∑m
i=1(βi − αi) · sSi

. On the contrary, when a communication rule is
applied, we need to update the free space of Vv (i.e., the membrane where the
reaction is applied) as F (Vv) = F (Vv) +

∑m
i=1 αi · sSi

and the free space of each
target volume Vtgtk indicated by the rule: F (Vtgtk) = F (Vtgtk)−

∑m
i=1 βi,ksSi .

At each iteration of the algorithm, in order to obtain a correct description of
the system’s dynamics, we need to check if a rule r (internal or communication)
is applicable. A complete description of Sτ -DPP can be found in [11]; some
additional details about the implementation of the algorithms will be provided
in the next section.

Handling diffusive events and crowding in τ -DPP and Sτ -DPP
algorithms

The iterations of the simulation algorithms described in the previous sections are
composed of three main stages: (i) computation of the reactions probability; (ii)
calculation of the τ value; (iii) selection of the reactions to execute and check of
the system state consistency. During these stages we have to keep into account
some details in order to correctly describe diffusive events and the effect due to
crowded media, as described in what follows.

In the first stage, given the system state x, the probability a(x) of a rule appli-
cation (i.e. the propensity function) is generally computed as follows: a(x) = c·h,
where c is the stochastic constant associated to the rule and h is a combinatorial
function depending on the left-hand side of the rule [18]. This definition is used
in τ -DPP to compute the propensity functions of each volume of the system.
Note that, this operation is performed independently in each volume; hence, the
propensity function of the reactions occurring inside a volume Vv depend only
on its current state (defined as Mv).

For what concerns the Sτ -DPP algorithm, the propensity functions of the
internal reactions are computed by also considering the value of the free space
of the current volume. So doing, we can correctly simulate crowded systems: we
suppose that while first order reactions (e.g. a→ b) are not affected by the value
of the free space, in the case of reactions of higher orders, the lack of free space
enhances the reaction probability. Therefore, the propensity functions of second
and third order reactions are computed as follows:

a(x) =
c · h
F (V )

. (4)



On the other hand, communication rules representing diffusive events are not in-
fluenced by the free space left in the volume; therefore, their propensity functions
are computed as in the standard procedure.

During the second phase of the algorithms, inside each volume of the system,
a candidate length τ of a step is obtained by using the following equation:

τ = min
i∈S

{
max{εmi/gi, 1}

|µi(x)|
,
max{εmi/gi, 1}2

σ2
i (x)

}
,

where gi is a value depending on the highest order of reaction in which a species
i ∈ S is involved and ε is an error control parameter, while µi(x) and σ2

i (x) are
calculated as described below (according to the definition presented in [19]):

µi(x) =
∑

j∈Rncr∩Rint

(vi,j aj(x)) +
∑

j∈Rncr∩Rcomm

(−lhsi,j aj(x)) , ∀i ∈ S,

σ2
i (x) =

∑
j∈Rncr∩Rint

(
v2
i,j aj(x)

)
+

∑
j∈Rncr∩Rcomm

(
−lhs2

i,j aj(x)
)
, ∀i ∈ S,

where j belongs to the set R of reactions of the considered volume, the restric-
tion on the set of noncritical reactions Rncr is present, due to the conditions of
the modified non-negative Poisson tau-leaping [8], while Rint represents the set
of internal rules and Rcomm the set of communication rules. During the compu-
tation of µi and σ2

i , we consider the variation of the species i due to the reaction
j (specified by the value vi,j), for what concerns internal rules. On the other
hand, we only consider the variation of the species i described by the left-hand
side of a communication rule j (lhsi,j), since the current volume is affected only
by these variations.

There exists different approaches in which communication rules (i.e. diffusive
processes) are considered as special events and their probabilities are computed
by using a deterministic formulation, and during the calculation of µi and σ2

i

besides the changes of the species due to the rule, also the contribution of the
neighbourhood volumes is taken into consideration (see, for instance, [34]).

In the last part of the algorithms, the set of reactions to be executed inside
each volume is selected, and before the system update, the applicability of this
set has to be verified in order to obtain a consistent system state.

Both τ -DPP and Sτ -DPP select the number of occurrences of each reaction j
(inside each volume) by sampling a random number from a Poisson distribution
having mean and variance equal to aj(x)τ . Afterwards, the applicability of the
set of selected reactions is verified: both algorithms check if the system state
resulting from the execution of the reactions contains negative values for the
amount of some molecular species. Moreover, in the case of Sτ -DPP, the set of
reactions selected in a volume is applicable only if there is enough free space
after the rules application [11].

As stated above, a rule can be executed only if the free space of the volume, af-
ter the rule application, is greater or equal to zero. The rule applicability is com-



puted differently for internal and communication rules. Given an internal rule oc-
curring inside volume Vv, we need to check if, after the rule execution, F (Vv) ≥ 0.
For what concerns a communication rule r, we also need to check all the free
space of all the target volumes indicated by the rule: ∀ tgtl of r, F (Vtgtl) ≥ 0,
where the values βj are the stoichiometric coefficients of the molecular species
associated with Vtgtl .

Note that, using a strategy based on the tau-leaping algorithm to describe
the behaviour of the system, at each iteration step a certain number of rules is
applied in parallel. Hence, the applicability of the entire set of selected rules has
to be verified. This operation is realised by computing the free values of each
volume Vv considering the contribution of all the selected rules; if the values of
F (Vv) is greater or equal to zero (for each volume), then the execution is allowed.

If any of these requirements is not satisfied, then the value of τ is reduced by
half and a new set of reactions is selected (this strategy has been proposed in [8]).
On the other hand, the iteration of the τ -DPP and Sτ -DPP algorithms proceeds
by updating the system state and the simulation time; and the simulation finishes
if a termination criterion is reached.

4 Validation of the diffusion implemented with τ -DPP

In this section we present some results obtained from simulations performed by
using τ -DPP in order to verify if diffusion is correctly handled by our simula-
tion algorithm. Berstein [5] showed that it is possible to simulate mesoscopic
RD systems using the Gillespie’s algorithm comparing the simulations with the
solution of diffusion equations. We adopted the same strategy in order to show
that τ -DPP can be used to reproduce diffusion introducing a reasonably small
error.

4.1 A popular diffusion equation: the heat equation

The heat equation is a partial differential equation which describes the heat
distribution in a region during time, and it is a special case of diffusion equation
where the diffusion coefficient D is constant in time and space:

∂u(−→x , t)
∂t

= D∆u(−→x , t) (5)

where u(−→x , t) is the density of the diffusive material in −→x at time t, and ∆ =
∂2

∂x + ∂2

∂y + ∂2

∂z is the Laplacian operator.
To test the accuracy of τ -DPP in reproducing diffusion, we studied the uni-

dimensional diffusion of the molecule S in the region Ω ⊂ R:

∂[S]
∂t

(x, t) = D
∂2

∂x
[S](x, t), ∀x ∈ Ω (6)

where [S](x, t) indicates the concentration of molecule S in position x at time t.
In particular, we considered the region Ω = [0, 1] and the Neumann boundary
conditions:



∂[S]
∂x

(0, t) =
∂[S]
∂x

(1, t) = 0, (7)

indicating that the flux from outside into Ω is null. Considering D = 1, an exact
solution in the region Ω satisfying Eq. 7 is:

[S](x, t) = SΩ[1 + 1
2e−π

2γ2tcos(γπx)] (8)

where SΩ is the total number of S molecules inside the system and γ is a non
negative integer. In all the cases that we will discuss in the next section we have
considered γ = 3 and SΩ = 500.

4.2 Comparison between τ -DPP and the heat equation

In order to compare the simulations performed by using τ -DPP with the con-
tinuous exact solution of the heat equation (Eq. 8) at a given time instant, we
dived the region Ω into N smaller adjacent regions Vv such that Ω =

⊕
v Vv.

A series of issues have to be handled to realize a meaningful comparison. First,
since τ -DPP algorithm is stochastic, it is crucial to consider a high number of
simulations in order to obtain a significant comparison with the heat equation.
We accomplished this task averaging the results of a sufficiently high number
G of simulations. Note that, in general, this average is not representative of the
final state of a system, like in the case of multistable systems, in which averaging
may lead to fictitious states. However, when the average solution converges to
the system state – as in the case we are considering here – the deviations from
the exact solution can be considered as a type of sampling error and the average
solution is a good representative of the system state.

Second, since τ -DPP simulator works with molecules, rather than molecule
concentration, we must calculate the initial distribution of S molecules within
Vv, i.e., S1, . . . , SN , from the solution of Eq. 8 at time t = 0, in order to use this
distribution as input for τ -DPP. Moreover, we must calculate τ -DPP predicted
concentrations, [S∗]1, . . . , [S∗]N , from the distribution of S molecules over the
sub-volumes at a particular time point. These conversions have been defined ac-
cording to the following relation between concentration [S] and molecule number
S:

[Sv] =
Sv
sVv

, ∀v (9)

Note that the solution of Eq. 8 must be calculated using the appropriate vector
x = (x1, . . . , xv, . . . , xN ), whose members are located at the middle of each
volume sVv

:

xv =
sVv

2
+ (v − 1)sVv

, ∀xv ∈ x (10)

Third, since the time increments τ are randomly generated, it is very unlikely
that the simulator will output a numerical solution exactly at a specific time



point t. Therefore, the molecule distribution computed by τ -DPP at a particular
time point t has been calculated as a linear interpolation of the two numerical
solutions at t1 < t and t2 > t, where t1 and t2 are, respectively, the points
computed by the τ -DPP that immediately precede and follow t. An example of
comparison between the heat equation and the τ -DPP simulations is shown in
Fig. 1, where it is possible to observe the high closeness between the simulations
and exact solution.

Fig. 1. The heat equation exact solution (line) and τ -DPP average results (dots) at
t = 0.0078034, SΩ = 500, G = 10000, γ = 3, sVv = 0.025.

Quantitatively, the quality of the τ -DPP simulation e = 1, . . . , G has been
assessed considering, as in [5], the error due to the difference between the exact
solutions [Sv,e] and the concentrations computed using the numerical results of
τ -DPP [S∗v,e]:

εv =
1
G

G∑
e=1

(1−
[S∗v,e]
[Sv]

) (11)

in the volume v, considering a pool of G simulations ran with the same settings.
Note that εv → 0 as [S∗v,e] → [Sv,e] (obviously) and in the case in which the
distribution of [S∗v,e] is symmetric with respect to the exact value [Sv]. The
errors εv have been averaged considering all the elements of Ω:

ε̄ =
1
N

N∑
v=1

| εv | (12)



We studied the relation of ε̄ with the number of simulations 10 ≤ G ≤ 10000
and the number of volumes 10 ≤ N ≤ 40 used to discretise the spatial region Ω

sVv
=
Ω

N
. (13)

As the number of simulations increases the sampling error decreases (as
shown in Fig. 2). In particular, we observed a decrease of one order of magni-
tude passing from 10 to 104 simulations in all cases with exception of sVv = 0.1
(N = 10), where the decrease has been lower. Note that as G → 0 the lowest
error is associated to settings with a higher sVv

, while as G→∞ the lowest error
is associated to lower sVv

. This can be attributed to the noise: as sVv
→ 0, the

volumes will contain a lower number of molecules (high noise); hence, a higher
number of simulations is required to eliminate noise. This phenomenon has been
particularly evident in the study presented here due to the relatively low quan-
tity of molecules used, SΩ = 500, with respect to the number of volumes for the
discretisation of Ω, 10 ≤ N ≤ 40: we passed from Sv ∈ [10, 102] when sVv

= 0.1
(N = 10) to Sv ∈ [1, 10] when sVv

= 0.025, (N = 40).

Fig. 2. Relation between the error ε and the number of simulations (G). sVv = 0.1 (*),
sVv = 0.05 (2), sVv = 0.033̄ (4), sVv = 0.025 (◦), γ = 3, t = 0.0078034.

Another source of error is associated with the spatial discretisation, i.e. with
the number of membranes in which Ω is divided into. In order to reduce the
contribution of the sampling error it is crucial to study the behaviour of the
spatial discretisation error with a high G. This error decreases as sVv → 0
(Fig. 3).



Fig. 3. Relation between the spatial discretisation error and the volumes size at time
t = 0.0078034.

5 Macromolecular crowding with Sτ -DPP

Sτ -DPP allows to model objects of arbitrary size that react and diffuse through
a spatial region composed by the union of a set of membranes of arbitrary size;
therefore, Sτ -DPP can be used to simulate crowded RD systems. In a previ-
ous work, we have shown that Sτ -DPP are able to reproduce systems in which
crowding determines a slower motion of molecules [11].

In this section we show the effects of macromolecular crowding which in-
creases a biochemical reaction rate due to the increase of reaction collision prob-
abilities, that is in turn determined by the reduction of the free space induced
by crowding. In particular, the reduction of the space in a volume determines
the increase of the propensity functions of second and third order reactions, as
described in Section 3.

We accomplished this task by modelling a crowded RD system composed by
four species, A,B,C,Z, within the spatial region Ω ⊂ R2, represented using a set
of 81 membranes organised as a 9x9 bidimensional lattice, and two biochemical
reactions:

r1 : A + B c1−→ C (14)

r2 : C c2−→ A + B (15)

where c1 = 0.0001 and c2 = 0.001 are the stochastic constants. Stochastic con-
stants for diffusion rules have been set three orders of magnitude higher than



c1, c2, that is cDA
= cDB

= cDC
= 0.16, in order to ensure τD � τR. The

size of species Z is three orders of magnitudes bigger than that of the other
species (sD = 0.1, sA = sB = 0.0001 and sC = 0.0002) and it has been used to
represent macromolecular crowding. The simulation has been done considering
100 molecules of A and 100 molecules of B in each membrane while molecule
Z have been randomly distributed among the membranes; the number of Z has
been chosen in order to occupy 0 (diluted media) or approximately 1

3 (crowded
media) of the total volume. Note that, while molecules A,B,C can diffuse to
each first next neighbour, molecules Z do not diffuse.

For each membrane we determined the average value assumed by the propen-
sity function associated with the reaction defined in Eq. 14 (i.e. production of
C), during the simulation in the time interval [0, 10].

In the diluted condition the reaction propensity assumes approximately the
same value within all membranes, with mean value µ = 0.9237 and standard
deviation σ = 0.001842 (Fig. 4(a)). The distribution of the propensity functions
values has been affected by the addiction of crowding molecules: in this condition
we obtained mean µ = 1.451 and standard deviation σ = 0.498 (Fig. 4(b)). The
average reaction propensity values in the crowded media are up to 6 folds higher
then in the diluted case, and their homogeneity over the system is affected by
the presence of highly reactive volumes in which the production of molecules C
is faster, as shown in Fig. 5.

(a) (b)

Fig. 4. Average propensity function values of reaction r1 within the spatial domain in
(a) diluted (µ = 0.9237, σ = 0.001842) and (b) crowded conditions (µ = 1.451, σ =
0.498).

6 Conclusions

In this work we examined the application of two membrane systems variants,
τ -DPP and Sτ -DPP, in order to model and simulate spatial heterogeneity and
molecular crowding, two important characteristics of living cells.



Fig. 5. Number of C molecules in the crowded volume 78 (row 9 and column 7 of
Fig. 4) in diluted (solid line) and crowded (dashed line) conditions.

To capture spatial heterogeneity at the molecular level, a spatial domain
must be defined and the time evolution of possibly reacting molecules must
be tracked in different locations of the domain. We showed that τ -DPP can
reproduce the diffusion of molecules within a spatial region divided in a set of
sub-volumes (membranes) that can move (communicate) objects, according to
a defined topology.

We tested diffusion using the same strategy followed by Bernstein [5], i.e.,
we compared the τ -DPP simulations with an analytical solution of a PDE for
the heat equation (a diffusion equation). Note that for most applications of real
interest biological processes analytical solutions are hardly available.

The error that we reported is slightly greater than the one found in [5]. This
is due to the fact that the τ -leaping algorithm – which stands at the basis of
τ -DPP – generates an approximate dynamics with respect to the exact solution
of the chemical master equation, whereas the Gillespie’s algorithm used in [5] is
exact. We think that this loss of accuracy (that can be a priori controlled) is well
balanced by the increase in performance that enables simulations of more com-
plex systems. The quantitative characterisation of this discrepancy is currently
under investigations and it will be published in a future work.

Molecular crowding can be explicitly modelled by the Sτ -DPP variant, an
extension of τ -DPP, in which - among other features - sizes are associated to
objects and membranes. We have previously shown that Sτ -DPP captures the
delay in the communication of objects between volumes due to crowded con-
ditions [11]. In this contribution we showed that Sτ -DPP can also be used to



reproduce the reaction rate increase observed in crowded media due to the in-
crease of recollision probability determined by the reduction of the available free
space in a volume. This effect has been captured by modifying the propensity
function calculation of second and third order reactions, and it has been shown
with an example concerning a crowded RD system in a bidimensional region.

Considering the results provided in this work, Sτ -DPP can be successfully
used to model and simulate crowded RD systems. It is worthy to note that, the
current version of Sτ -DPP has all the features to capture the major effects that
a crowded medium determines over RD system dynamics, and we plan to do
an extensive study of this topic in future. Moreover, an interesting direction of
investigation, enabled by the possibility of arbitrarily defining the volumes size
and the topology of their communication, consists in the use of Sτ -DPP to study
RD systems dynamics in structured regions (as the cytoplasm of living cells).
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30. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Transactions on Computational Sys-

tems Biology VI, chap. P Systems, a New Computational Modelling Tool for Sys-
tems Biology, LNCS vol. 4220, pp. 176–197. Springer Berlin / Heidelberg (2006)



31. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. International Journal of Foundations of Computer Science 17(1), 183–204
(2006)

32. The P systems web page, http://ppage.psystems.eu
33. Rivas, G., Ferrone, F., Herzfeld, J.: Life in a crowded world. EMBO Reports 5(1),

23–27 (2004)
34. Rossinelli, D., Bayati, B., Koumoutsakos, P.: Accelerated stochastic and hybrid

methods for spatial simulations of reaction-diffusion systems. Chemical Physics
Letters 451(1-3), 136–140 (2008)

35. Stiles, J.R., Bartol, T.M.: Computational Neuroscience: Realistic Modeling for Ex-
perimentalists, chap. Monte Carlo Methods for Simulating Realistic Synaptic Mi-
crophysiology Using MCell, pp. 87–127. CRC Press (2001)

36. Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling
pathways–towards intracellular molecular crowding in silico. FEBS Letters 579(8),
1783–1788 (2005)

37. Zimmerman, S.B., Minton, A.P.: Macromolecular crowding: biochemical, biophys-
ical, and physiological consequences. Annual Review of Biophysics and Biomolec-
ular Structure 22, 27–65 (1993)

38. Zimmerman, S.B., Trach, S.O.: Estimation of macromolecule concentrations and
excluded volume effects for the cytoplasm of escherichia coli. Journal of Molecular
Biology 222(3), 599–620 (1991)

39. van Zon, J.S., ten Wolde, P.R.: Green’s-function reaction dynamics: a particle-
based approach for simulating biochemical networks in time and space. Journal of
Chemical Physics 123(23), 234910 (2005)


