
Massive Data-Parallel Swarm Simulation and

Visualisation using CUDA

Philipp Lucas

Friedrich-Schiller-University Jena
Department of Mathematics and Computer Science

Ernst-Abbe-Platz 1-4, 07743 Jena, Germany
philipp.lucas.1@uni-jena.de

Abstract. We introduce a real-time swarm simulation and 3D visuali-
sation software. It is designed as a playground for virtual experiments on
swarm behaviour to analyse and understand its underlying rules. To this
end, it provides a highly interactive interface that allows the user to mod-
ify many aspects of the simulation at runtime. Since particle simulations
are classic problems of parallel computing, the software utilises CUDA
to accelerate most parts of its computation. This way the massive power
of Graphics Processing Units (GPUs) can be employed. The resulting
speed up compared to a native CPU implementation varies depending
on simulation settings, but usually is at least 50-fold. This paper gives
an overview on capabilities, advantages and limitations of the software.

Key words: swarm simulation, particle simulation, CUDA, OpenGL,
3D graphics

1 Introduction

Membrane Computing emerged as a research area dealing with information pro-
cessing in and by dynamics of spatial structures [3]. Especially, interactions be-
tween particles and delimiting elements are under consideration. Indeed, it has
been successfully demonstrated that the resulting framework of membrane sys-
tems succeeded in capturing and modelling of numerous phenomena [2, 4]. Parti-
cle swarms (and swarm behaviour in general) can be seen as a special branch of
membrane computing bridging to the field of amorphous computation. We intro-
duce a widely configurable software able to describe and simulate the complex
behaviour of particle swarms in a massively parallelised manner.

Our software was developed as a project during the lecture “Parallel Al-
gorithms and CUDA” at Friedrich-Schiller-University Jena in winter 2009 [5].
CUDA is NVIDIAs parallel computing architecture that implements a more ad-
vanced version of SIMD called SIMT and thereby allows parallel general purpose
computation on certain NVIDIA graphic cards.

The initial idea for the project was to employ CUDA for simulating natural
movement and behaviour of a fish swarm. As a fish swarm consists of many
individuals whose behaviour exclusively depend on its local context but does not



require any central organising unit, CUDA can be seen as an ideal candidate.
We discretise time by calculating the state of a fish at time ti+1 as a function
of the state of the whole swarm at time ti. Since this function is equal for all
fishes, the state of the whole swarm can easily be calculated in parallel.

The question arises what kind of rules are typical for fish swarms. In 1986
Craig Reynolds published a paper addressing this issue [6]. He proposed three
simple rules: Firstly, separation, which lets a fish avoid crowding with its neigh-
bours. Secondly, alignment, which lets a fish steer towards the average heading
of its neighbours. And thirdly, cohesion, which makes a fish steer toward the av-
erage position of its neighbours. A neighbour of a fish is a fish that is currently
located within its field of view, which can be described by a viewing direction,
viewing angle and maximum viewing distance. Each of the rules results in a vec-
tor, which describes the desired movement. The weighted sum of these vectors
along with the current position gives the new position of a fish.

Actually, swarm simulation is just like simulation of particle systems. In both
cases, there are a certain number of different types of objects, each type following
its own set of local rules. In the fish swarm scenario, we could for example add
a predator. We just need to introduce new rules for the predator and the prey.
Necessary modifications on the framework are minor. This feature makes the
program highly flexible and useful for further applications.

2 Optimisations and Challenges

The most computationally expensive part of the simulation is to calculate the
neighbourhood of a particle. Since there is no structural spatial information,
except for positions and directions, from which neighbours could be derived,
we need to check all particles against each other. That takes O(n2) time for
n particles. By now, no optimisation other than the obvious parallelisation is
implemented, however using k-dimensional trees (kd-trees) or more elaborate
data structures like a Bkd-Tree [1] we should be able to induce a significant
speed-up. We plan to integrate this approach in further versions of our software.

One of the main challenges to achieve high speed in the simulation was good
memory management on both, the GPU device and the host system. This is
essential for several reasons:

The CUDA architecture provides various types of GPU memory, each having
advantages and disadvantages mainly regarding its size, speed and accessibility.
We use the GPU’s shared memory as a buffer to minimize global memory access,
since one read operation from global memory makes data available to many
particles.

Furthermore, in particular the amount of registers needed by a single particle
for its calculations has significant influence on the overall performance. This is
due to the limited amount of registers per processor on the GPU. If we need
too much memory for one particle, there is not enough capacity left to keep all
sub-processors of that processor busy. Hence it was most important to optimise
register usage, even at the expense of extra computation.



Additionally, CPU and GPU have physically different memories, which turns
the necessary communication between both into a bottleneck for many applica-
tions. Actually for this simulation we would only need little communication,
since data on the GPU, i.e. positions and directions of all particles, are exclu-
sively needed for the next simulation step and the visualisation, which is natu-
rally done on the GPU as well. However, we employ OpenGL and by now there
is unfortunately no interface to pass that kind of data from CUDA to OpenGL.
Therefore we decided to minimize communication between CPU and GPU, i.e.
after each time step only the updated state of particles is sent to the host, but
no data transfer from host to device is needed.

3 Features and Limitations

The program combines simulation of many-particle systems with 3D-visualisation
and an interface to change most parameters in real-time.

At any time it is possible to pause the simulation, add or remove particles,
change the viewers position, change the graphical model of particles, alter pa-
rameters and save the current set of simulation parameters to a file or load
another set from a file.

From a technical point of view the number of particles is hardly limited. At
the moment one particle takes 36 Bytes of global memory on the GPU, but even
an older graphic card that supports CUDA provides at least 256 MB memory.
That allows more than 7 million particles without any changes at the imple-
mentation. However, as it was discussed before and as you can see in diagram
1 runtime increases quadratic with number of particles. It is also possible to
disable visualisation, which significantly increases simulation speed for smaller
numbers of particles.

For the simulation of a fish swarm the rules are rather simple and accord-
ingly we need few registers per particle. However, for more complex rules much
more registers might be needed, which will have a significant negative effect on
simulation speed as discussed in section 2.

Currently there is no meta-language or GUI to create sets of rules. They
must be implemented in the source code, requiring some understanding of C++
and CUDA. However, due to the modular structure which separates GUI, basic
framework and simulation, various rules can be specified and selectively activated
at runtime.

4 Results

A series of screenshots in figure 2 should demonstrate the various results that
can be achieved by altering parameters of a single rule set.

Acknowledgments. I would like to thank Waqar Saleem and Jens Müller for
our many discussions, as well as for their useful suggestions and continuous help.



Fig. 1: This figure shows the
simulation performance of our
software depending on the cal-
culation device. (CPU ) and
(GPU ) exclude the time needed
for rendering all particles with
OpenGL. GPU also does not in-
clude costs for memory copying
from the GPU to the host. Refer
to (GPU incl. Visualisation) for
the overall performance.

(a) Explosion (b) Thin torus (c) Large swarm (d) Various streams

Fig. 2: Results from varying rule parameters

Moreover, I very much appreciate the support of Thomas Hinze for making this
abstract possible.

References

1. Agarwal, P., Arge L., Procopiuc, O., Vitter J.: Bkd-tree: A Dynamic Scalable
kd-tree, In: Proceedings of International Symposium on Spatial and Temporal
Databases (2003)

2. Cecilia, J.M., Garcia, J.M., Guerrero, G.D., Martinez-del-Amor, M.A., Perez-
Hurtado, I., Perez-Jimenez, M.J.: Simulation of P systems with active membranes
on CUDA. In: Briefings in Bioinformatics 64, pp. 1–10 (2009)

3. Ciobanu, G., Perez-Jimenez, M., Paun, G.: Applications of Membrane Computing.
Springer, Berlin (2006)

4. Diaz-Pernil, D., Perez-Hurtado, I., Perez-Jimenez, M.J., Riscos-Nunez, A.: A P-
Lingua Programming Environment for Membrane Computing. In: LNCS 5391, pp.
187–203 (2009)

5. FSU Jena, Department of Mathematics and Computer Science: Programming
with CUDA, http://theinf2.informatik.uni-jena.de/For_Students-p-9/

Lectures/Programming_with_CUDA-p-41/WS_2009_2010.html#projects

6. Reynolds, C. W.: Flocks, Herds, and Schools: A Distributed Behavioral Model.
In: Computer Graphics, 21(4), ACM SIGGRAPH ’87 Conference Proc., pp.25–34,
Anaheim, California (1987)


