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Solving NP Problems in Membrane Computing

⊲ Many problems:

SAT: The problem of propositional satisfiability for formulas i n con-
junctive normal form

Subset Sum: Given a finite set,A, a weight function,w : A → N , and a
constantk ∈ N, determine whether or not there exists a subsetB ⊆ A

such that w(B) = k. If A hasn elements with weightsw1, . . . , wn, one
instance of the problem can be encoded as(n, (w1, . . . , wn), k).

Partition : Given a setA = {a1, . . . , an}, where each elementai has a
weightwi ∈ N, decide whether or not there exists a partition ofA into
two subsets such that they have the same weight.

. . .
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New membranes

⊲ Divison of membranes(based on mitosis): P Systems with Active Membra-
nes

a b c

⊲ Creation of membranes(based on autopoiesis): P Systems with Membrane
Creation

a

b

b

b

c

c

c
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Trading space for time

⊲ Division of membranes:
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Trading space for time

⊲ Creation of membranes:
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Caveat!

⊲ Generating an exponential amount of membranes in linear time may not
be enough!

⊲ Păun’s Conjecture:

Object evolution rules

Communication rules (send-in and send-out)

Division of membranes

Dissolution of membranes

Without polarizations

⊲ Other ingredients: Priorities, cooperation, electrical charges, . . .

⊲ Several semantics
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A common scheme

⊲ A common scheme:

Generation stage: membrane division or membrane creation is used
to bulid an exponential amountof membranes.

Calculation stage: in each membrane, a feasible candidate solution is
encoded.

Checking stage: in each membrane it is checked if the candidate is a
solution

Output stage: The results of the checkin is collected and a final answer
is delivered.
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Membrane Computing

In vivo implementation where each feasi-
ble solution is encoded in an elementary
membrane

Such elementary membrane isimplemen-
ted in a bacteria of mass similar to E. Coli
(∼ 7 × 10−16 kg.),

An instance of a NP problem with input
size 40 will need approximatelythe mass
of the Earth for an implementation (∼ 6×
1024 kg.)
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Searching Strategies

⊲ Searching has been deeply studied in Artificial Intelligence.

⊲ In its basic form, a stateis an instantaneous description of the world and
two states are linked by atransition which allows us to reach a state from
a previous one.

⊲ The order in which the nodes are explored determines the
searching strategy
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Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

☞
☞
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Depth-first Search

⊲ In an abstract way, the representation of a problemP = (a, S, E, F ) as a
space of states consists on:

A set of statesS and an initial state, a ∈ S

A set E of ordered pairs (x, y), called transitions, where x and y are
states andy is reachable fromx in one step.

A setF of final states.
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Ingredients?

- Dissolution

- Cooperation

- Inhibitors

- Priority

hola

hola

- Open problem:
Remove ingredients

hola

hola
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Depth-first Search with P Systems

⊲ P systemΠ = (Γ, H, µ, we, ws, R1, R2, R3, R1 > R2 > R3) with priorities

⊲ The alphabet Γ = S ∪ {pe, re | e ∈ E}, the set of labelsH = {u, s}, the
membrane structureµ = [ [ ]u ]s, the initial multisets wu = {a} and ws = ∅
and the sets of rulesR1, R2 and R3

R1 = {[x]u → λ : x ∈ F}. For each final state we have adissolution
rule which dissolves the membraneu.

R2 = {[x¬py → y rxy]u : (x, y) ∈ E}. For each transition (x, y), x can
be changed byy rxy if py does not occur in the membraneu, i.e.,py acts
as aninhibitor .

R3 = {[y rxy → x py]u : (x, y) ∈ E}. For each transition (x, y) we have
a cooperativerule where the multiset y rxy is rewritten as x py in the
membraneu.
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Depth-first Search with P Systems

⊲ Intuition behind the objects is the following:

Recall the current state (one object from S) in the configuration. It
represents the current state in the searching process.

Recall theforbidden nodes(objectspy)

Recall thepath to the current node(objectsrxy)
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A Case Study: The N-queens puzzle

⊲ The N-queens puzzleconsists on placing N pieces (queens) on an N×N
grid in such way that no two queens are on the same row, column or
diagonal line.
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The N-queens puzzle

The
N-queens

puzzle

a A
constraint
problem

a

A formula
in CNF

a

P system
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The N-queens puzzle

- There is at most one queen in
each column.

- There is at most one queen in
each row.

- There is at most one queen in
each ascendant diagonal line.

- There is at most one queen in
each descendant diagonal line.

- There is at least one queen
in each column.
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A formula in CNF

⊲ ψ1 ≡
n

∧

i=1

n
∧

j=1

n
∧

k=j+1

(¬sij ∨ ¬sik) ψ2 ≡
n

∧

i=1

n
∧

j=1

n
∧

k=j+1

(¬sji ∨ ¬ski)

⊲ ψ3 ≡
n−2
∧

d=0

n−d
∧

j=1

n−2
∧

k=j+1

(¬sd+j j ∨ ¬sd+k k) ψ4 ≡
−1
∧

d=−(n−2)

n+d
∧

j=1

n+d
∧

k=j+1

(¬sj j−d ∨ ¬sk k−d)

⊲ ψ5 ≡
n+1
∧

d=3

d−1
∧

j=1

d−1
∧

k=j+1

(¬sj d−j ∨ ¬sk d−k) ψ6 ≡
2n−1
∧

d=n+2

n
∧

j=d−n

d−1
∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

⊲ ψ7 ≡
n

∧

i=1

n
∨

j=1

sij

⊲ Φ ≡ ψ1

∧

ψ2

∧

ψ3

∧

ψ4

∧

ψ5

∧

ψ6

∧

ψ7
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P system (rules)

(a,1) [ dj ]02 → [ sj+1 ]+2 [ sj+1 ]−2 for all j ∈ {0, . . . , n − 1}.

(a,2) [ dj ]+2 → dj [ ]02 [ dj ]−2 → dj [ ]02 for all j ∈ {1, . . . , n}.

(a,3) dj [ ]02 → [ dj ]02 for all j ∈ {1, . . . , n − 1}.

(a,4) [ di → di+1]
0
1 for all i ∈ {n, . . . , 3n − 4} ∪ {3n − 2, . . . , 3n + 2m}.

(a,5) [ d3n−3 → d3n−2e]
0
1.

(a,6) [ d3n+2m+1 ]01 → No [ ]+1 .

(b) [ sj → tjdj ]+2 [ sj → fjdj ]−2 for all j ∈ {1, . . . , n}.

(c,1)

{

[ xi1 → ri1 ]+2 [ yi1 → λ ]+2
[ xi1 → λ ]−2 [ yi1 → ri1 ]−2

}

for all i ∈ {1, . . . ,m}.

(c,2)

{

[ xij → zij ]+2 [ yij → hij ]+2
[ xij → zij ]−2 [ yij → hij ]−2

}

for all i ∈ {1, . . . ,m} andj ∈ {2, . . . , n}.

(d) . . .

⊲ Guti érrez-Naranjo, M.A., Mart ı́nez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.:Solving the N-queens Puzzle with P Systems.
In: Guti érrez-Escudero, R., Gutíerrez-Naranjo, M.A., Păun, Gh., Ṕerez-Hurtado, I., Riscos-Ńuñez, A. (eds.)Seventh Brainstorming Week
on Membrane Computing. vol. I, pp. 199–210, F́enix Editora, Sevilla, (2009)
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Experimental results: 4-queens puzzle

⊲ Simulation: P-lingua simulator http://www.p-lingua.org

⊲ One processor Intel core2 Quad (with 4 cores at 2,83Ghz), 8GB of RAM
and using a C++ simulator over the operating system Ubuntu Server 8.04.

⊲ A formula in CNF with 16 variables and 80 clauses.

⊲ The input multisethas 168 elements.

⊲ 216 = 65536 elementary membranes need to be considered in parallel

⊲ 20587 seconds (> 5 hours).
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Experimental results: 4-queens puzzle

⊲ The answerYes

w1 = {f1, f2, t3, f4, t5, f6, f7, f8, f9, f10, f11, t12, f13, t14, f15, f16}

w2 = {f1, t2, f3, f4, f5, f6, f7, t8, t9, f10, f11, f12, f13, f14, t15, f16}

1 2 4

6 7 8

9 10 11

13 15 16

1 3 4

5 6 7

10 11 12

13 14 16
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The 5-queens puzzle

⊲ The 5-queens puzzle needs225 = 33554432 simultaneous elementary
membranes

⊲ It is impossible to deal with so many membranes with current simulators.

⊲ What about using a P system implementing depth-first rearch?

⊲ Can we findone solutionto the N-queens puzzle?
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A New Solution for the N-queens Problem

⊲ States:Arrangements of k queens(0 ≤ k ≤ N), one per column in the
leftmost k columns.

⊲ Transitions (x, y): The statey is the statex where a new queen is added in
the leftmost empty column. Such new queen is not attacked by any other
one.

⊲ Codification: the position of a queen as a set of four objectsxi, yj, ui−j and
vi+j, wherexi represents a column andyj represents a row(1 ≤ i, j ≤ N).
The objectsui−j and vi+j represent the ascendant and the descendant dia-
gonals respectively and their subindices are determined bythe correspon-
ding column and row i and j.
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A New Solution for the N-queens Problem

⊲ Set of rules:

R1 = {[xN+1]u → λ : x ∈ F}. In this design, when the objectkN is
reached, the membraneu is dissolved and the computation ends.

R∗ = {[pi,jxi−1 → xi−1]u : i ∈ {2, . . . , N}, j ∈ {1, . . . , N}} Deleting
useless objects.

R2 = {[xi yj ui−j vi+j ¬pi,j → xi+1 ri,j ]u : i, j ∈ {1, . . . , N}} These ru-
les put a new queen on the chessboard by choosing an eligible position.

R3 = {[ri,j xi+1 → xi yj ui−j vi+j pi,j]u i, j ∈ {1, . . . , N}}. These rules
remove on queen form the chessboard and implement the backtracing.
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Experiments

⊲ An ad hocCLIPS simulator has been written

Intel Pentium Dual CPU E2200 at 2,20 GHz, 3GB of RAM

CLIPS V6.241 under Windows Vista

⊲ It took 0,062 seconds for a4 × 4 board

⊲ It took 15,944 seconds for a20 × 20 board.
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Example

⊲ A solution for the 20-queens problem found by thead hocCLIPS simula-
tor

1-20 2-1 3-3 4-5 5-2 6-4 7-13 8-10 9-17 10- 15
11-6 12-19 13-16 14-18 15-8 16-12 17-7 18-9 19-11 20-14
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Final remarks

⊲ Brute force algorithms have been widely used in the design ofsolutions
for many problems in Membrane Computing.

⊲ Division and creation of membranes allow us to have as many membranes
as we need.

⊲ The usual idea: Generate all feasible solutions and check.

⊲ But, if we want effective solutions we need to leave brute force and explore
new paths

⊲ Heuristics ?

Thanks!
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