
Testing Based on P Systems -

An Overview

Marian Gheorghe1,2

&
Florentin Ipate2

1University of Sheffield
2University of Piteşti

2

Summary

• Software testing
– needs
– techniques

• P systems testing
– coverage principle
– grammar-like
– finite state machine (X-machine)
– model checking

• Further work and conclusions

3

P systems in modelling and simulation

 In the last years there have been significant developments in using
the P systems paradigm to model, simulate and formally verify
various systems (biology, economics, linguistics , graphics, computer
science etc) – Ciobanu, Păun, Perez-Jimenez, 2006, some special
issues of BioSystems, Handbook of MC, Scholarpedia

• Software packages developed for some of these applications
(P system web page http://ppage.psystems.eu) - P-lingua, Metabolic P
systems, Stochastic P systems, IBW, P systems for reaction kinetics.

• Both formal verification and testing have been applied for some
classes of P systems

http://ppage.psystems.eu/

4

Software testing

Software testing

• is the process of checking software, to verify that it satisfies its
requirements and to detect errors.

• consists of, but is not limited to, the process of executing a
program or application with the intent of finding software bugs.
(http://en.wikipedia.org/wiki/Software_testing)

Major testing activity

• Test case (test suite) generation: selection of test values most
likely to find faults

5

The Triangle program

The aim of this program is to classify triangles. The program accepts
three positive integers as lengths of the sides of a triangle. The program
classifies the triangle into one of the following groups:

• Equilateral: all the sides have equal lengths (return 1)
• Isosceles: two sides have equal length, but not all three (return 2)
• Scalene: all the lengths are unequal (return 3)
• Impossible: the three lengths cannot be used to form a triangle, or form
only a flat line (return 4)

Adapted from
http://www.cs.bris.ac.uk/Teaching/Resources/COMS12100/reports/triangle.html
(appears in Myers’ book)

6

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

7

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

8

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

9

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

10

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

11

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

12

Java implementation

int triangle(int a, int b, int c)
{
 int mx, x, y;
 mx = a; x = b; y = c;
 if (mx < b)
 {x = mx; mx = b;}
 if (mx < c)
 {y = mx; mx = c;}
 if (mx >= x + y)
 {return 4; // impossible}
 if (a == b && b == c)
 {return 1; // equilateral}
 if (a == b || b == c || a == c)
 {return 2; // isosceles}
 return 3; // scalene
}

White box: code
coverage (3,5,3)

13

Coverage methods

• In structural testing a program is represented as a directed graph
and various coverage criteria can be defined:

– Statement (node) coverage
– Branch (decision) coverage
– Multiple condition coverage
– etc

• Coverage criteria can also be used in functional testing (especially
for model based testing), e.g., rule coverage for specifications
represented as context-free grammars – each production rule of the
grammar is applied at least once; compilers, syntax-oriented tools.

14

Test generation based on a formal model

• Functional testing based on a formal specification (model)
 - test values can be derived in a rigorous manner
 - test derivation can be automated

• Conformance testing: Assumption: the implementation under test
(IUT) can be modelled by an unknown model, belonging to a
known set – the fault model

• The test suite determines if the IUT conforms to the specification

• Example: FSM based techniques: state/transition cover, UIO, W,
Wp, etc.

15

Rule coverage based P system testing

Grammar-like testing*. One compartment P system, Π

 A test set T for Π consists of multisets such as for any rule r in Π
there is u ∈ T such that u covers r (simple rule coverage)

u covers r: a→v iff there is w ⇒* xay ⇒r x’vy’ ⇒* u

• Test application – checks whether all elements of the test set are
computed by the implementation

• It will be considered that a P system model is given and an
implementation of it is going to be tested

*M Gheorghe, F Ipate (2008) On testing P systems. LNCS, 5397, 2008, pp 173—188.

16

Example
Π has r1: s→ab; r2: a→c; r3: b→bc; r4: b→c and s initial multiset
 s
 r1 T={ab, bcc, ccc}; {bcc, ccc}; {ccc}
 ab or
r2r3 r2r4 T'={ab, bcc, cc}; {bcc, cc}
 bcc cc
 r4 T or T' - rule coverage
 ccc

Implementations:
Π1: r1: s→ab; r2: a→λ; r3: b→c //can’t compute bcc, cc, ccc
Π2: r1: s→ab; r2: a→bc; r3: a→c; r4: b→c // computes both T, T'

Obs. bccc is not computed by Π2 but is produced by the model Π

17

Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc

18

Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc

19

Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc

20

Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc

21

Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc
Π2: r1: s→ab; r2: a→bc; r3: a→c; r4: b→c //don’t compute bccc

22

Context-dependent rule coverage. Test set

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c,
The rules r1 s→ab & r3 b →bc represent the direct contexts of the
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

 s
 r1
 ab
r2r3 r2r4
 bcc cc
 r4 r3 context-dependent rule coverage
 ccc bccc
Test sets: T={bcc, cc, ccc, bccc}; {cc, ccc, bccc}

23

Multiple compartment P systems

• Rule coverage:
(u1, …, un) covers ri: ai→vi iff
(w1,… wn) ⇒* (x1, …xiaiyi, …xn) ⇒ (x1

’, …xi
’viyi

’, …xn
’) ⇒*

(u1,… un)

• Simple rule coverage is defined similarly to one compartment

• Context-dependent rule coverage – consider evolution rules from
the same cell and communication rules from the neighbouring cells:
r’: b→uav in Ri is direct context for r: a→x in Ri

r’’: c→u’(a,t)v’ in Rj (t is either in or out and i, j are neighbouring
cells) is also direct context for r: a→x in Ri

24

Testing based on Finite State Machine*
• Build all the computations of the P system for a finite sequence of
steps, k – represented as a tree

• Tree = DFA which accepts finite language U over alphabet A,
composed of multisets of rules (labels of the tree arcs)

• Construct a deterministic finite cover (DFC) for U – a minimal
finite state machine that accepts all sequences in U and possibly
sequences that are longer than any word of U (Theorem 4*)

• Generate a test set, T, over the P system's alphabet V, for a certain
coverage principle (e.g. state or transition coverage)

• Conformance testing for DFC (e.g. W method)

*F Ipate, M Gheorghe: Finite state based testing of P systems, Natural Computing,
8(2009).

25

All computations for a given k

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c

 s
 r1
 ab
 r2r3 r2r4
 bcc cc
 r3 r4
 bccc ccc
 r3 r4

 bcccc cccc

 k = 4 steps, obtain Dt – a DFA over the set of labels defining the
multisets of rules applied {r1, r2r3, r2r4, r3, r4} accepting LDt

26

DFC for LDt

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

 s
 r1
 ab r1
 r2r3 r2r4
 bcc cc
 r3 r4
 bccc ccc r2r3 r2r4
 r3 r4
 bcccc cccc r4
 r3

 DFC, M, for LDt
In general DFC (4) has less states than DFA (8) (also true for
minimal FSM's)

q0

q1

q2 q3

27

Coverage criteria for DFC Automata

• Specification is a finite automaton with all states final.

• State coverage S: for each state q there is u∈S and a path that
reaches q such that u is computed from w through a computation
defined by the path.

 Transition coverage T: for each state q and each valid label of a
transition from q (to q') there is u∈T and a path that reaches q' and
includes q such that u is computed from w through a computation
defined by the path.

28

W method for DFC Automata
• Specification is a finite automaton with all states final.

• Aim to show implementation behaves identically with the
specification for all sequences of length less than or equal to an
upper bound N.

• Characterization set W: distinguishes between every pair of
states of the specification.

• W method for DFC: sequences of minimum possible length are
chosen to reach states or distinguish between states: Proper state
cover and Strong characterization set (λ ∈ W)

• Test suite: (S A[m-n+1] W) ∩ A[N], where A[k] = {λ} ∪… ∪ Ak

29

Test set components. Example

q0

q1

q2

q3

1 S = {λ , 1, 11, 111}

T = {λ, 1, 11, 111, 1110}

W = {λ, 1, 11, 111}

Incorrect
S = {λ , 1, 11} –q3 not covered
W = {λ , 111}

1

1

0

30

Example. DFC for Π

q0

q1

q2 q3

r1

r2 r3 r2 r4
r3 r4

S = {λ , r1 , r1 . r2r3 , r1 . r2r4}

T = {λ , r1 , r1 . r2r3 , r1 . r2r4,
r1 . r2r3 .r3, r1 . r2r3 .r4 }

W = {λ , r1, r2r3 , r3}

31

Test set for state cover - S

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

 s
 r1
 ab
 r2r3 r2r4 r1
 bcc cc
 r3 r4
 bccc ccc
 r3 r4 r2r3 r2r4
 bcccc cccc
 r3 r4

 DFC, M, for LDt

S = {λ , r1 , r1 . r2r3 , r1 . r2r4}; Ts={s, ab, bcc, cc}

q0

q1

q2 q3

32

Test set for transition cover - T

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

 s
 r1
 ab r1
 r2r3 r2r4
 bcc cc
 r3 r4
 bccc ccc r2r3 r2r4
 r3 r4
 bcccc cccc r3 r4

 DFC, M, for LDt

T = {λ , r1 , r1 . r2r3 , r1 . r2r4, r1 . r2r3 .r3, r1 . r2r3 .r4 }; Tt={s, ab, bcc, cc, bccc, ccc}

q0

q1

q2 q3

33

Results so far...

 For grammar-like and FSM based testing strategies, test sets for Π
T1 ={ab, bcc, ccc} – simple rule coverage;
T2 ={bcc, cc, ccc, bccc} – context-dependent rule coverage;
Ts1 ={s, ab, bcc, cc} – state cover, k=3, 4, ...;
Ts2 ={s, ab, bcc, cc, bccc, ccc} – transition cover, k=3, 4, ...;
 T1 ⊂ T2 ⊂ Ts2 ; Ts1 ⊂ Ts2
• Context-dependent is better than simple rule coverage and
transition cover outperforms state cover

• FSM based testing is better supported by FSM theory, produces in
general better results, but depends on the number of computation
steps (k); it requires more effort (build the DFC and then test sets)

• More elaborated test sets – take sequences of multisets (version of
T1 ={ab·bcc, ab·ccc})

34

Empirical analysis of the two approaches*

• Context dependent rule coverage achieves better detection than
simple coverage (100% vs 98.75% in some cases), but this is way
below the increase in the size complexity of the test set
• Both achieve better fault detection for sequences of multisets
(increase between 3.75% to 21.06%)
• The performance of FSM based approaches depend heavily on k
(for state coverage and k=2, values as low as 52.63% fault
detection; for transition coverage and high values for k, it achieves
at least 78.94% fault detection)
• When sequences of multisets are utilised, 100% in many case is
achieved, irrespective of the approach

*R Lefticaru, M Gheorghe, F Ipate: An empirical evaluation of P system testing
techniques, Natural Computing (to appear 2010)

35

X-machine (Generalised FSM) based testing

• X-machine based testing is well elaborated (more than 15 years)
and codification of various classes of P systems as X-machines
provided (Aguado et al, 2001; Kefalas et al, 2003)

• Testing P systems using non-deterministic stream X-machines
studied (Ipate, Gheorghe; ENTCS, 2008) – X-machine built
similarly to DFA (a finite number of computation steps)

• Unfortunately the general theory of X-machines and the
methodology of building X-machines from given P systems DO
NOT provide a way to define suitable testing techniques for P
systems as the X-machine representation does not adequately
replicate the P system – many micro-steps

36

Model based testing

• Above presented approaches – grammar-like and FSM based
testing, are model based techniques: the generation of the test set
utilises a certain model

• Two main difficulties faced
• FSM and X-machine approaches require another model
• It involves building suitable algorithms for test sets

• Question: are there other techniques that help building the test sets
from a generic model?

37

Model based testing

• Above presented approaches – grammar-like and FSM based
testing, are model based techniques: the generation of the test set
utilises a certain model

• Two main difficulties faced
• FSM and X-machine approaches require another model
• It involves building suitable algorithms for test sets

• Question: are there other techniques that help building the test sets
from a generic model?

• Yes... model checking (Kripke structure representation) through
counterexamples for properties that do not hold

38

Test suite using model checking

A test suite is obtained by following the 3 steps (Fraser et al, 2009):

• Define the test purpose by identifying a testing criterion as
features to be tested (reaching a state, traversing a sequence of
states, getting a value, verifying a condition)

• The features are specified as temporal logic formulas and then
converted into never-claim conditions or trap properties; Examples:
G !(state = s) or G !(x = val)

• The model checker verifies whether the never-claim or trap
property holds. It it is false a counterexample is returned – this
gives the exact path to state s or to where x becomes val

• Additionally, the P system is converted into a Kripke structure

39

Kripke structure
• A system M = (S, H, I, L), where

– S is a finite set of states
– I ⊆ S – initial states
– H ⊆ S ×S – left-total transition relation (for any s in S there is s' in S such
that (s,s') in H)
– L is an interpretation – associating toeach state a set of atomic propositions
true in the state

 Given a P system Π, a Kripke structure MΠ associated with Π is
constructed using the predicates
MaxPar(u, u1, v1, n1, … um, vm, nm) - m rules ui →vi are used ni
times, in maximal parallel mode
Apply(u, v, u1, v1, n1, … um, vm, nm) – v is obtained by the rules above

F Ipate, M Gheorghe, R Lefticaru: Test generation from P system using model
checking, JLAP, 2010
F Ipate, M Gheorghe et al: An integrated approach to P systems formal
verification (CMC11)

40

Kripke structure - The basis of testing

• Similar to FSM based testing a model of a system, as a Kripke
structure, K, is given and a (potentially faulty) model of the
implementation under test, K', is provided

Theorem 4 (Ipate, Gheorghe, Lefticaru)
(i) if a a property is satisfied then the implementation includes all
the paths of the specification
(ii) if the property is false then there is a path which has a finite
prefix in K and K' but in the next state the property is only true in
the model K, of the system

41

Represent the P system as a Kripke structure

• Convert various classes of P systems (with rewriting and
communication (non)-cooperative rules, with electrical charges,
with dissolving rules; more than one compartment; maximal
parallelism or asynchronous mode) to NuSMV (Ipate et al, 2010,
CMC11 presentation etc); basic principles:

• Kripke structure states are P systems multisets – a finite subset;
these are computed based on MaxPar predicate (for maximal
parallelism)

• Transitions between states are obtained utilising the Apply
predicate

• The model should contain some terminal state and an unexpected
halting state – when some conditions are not fulfilled

42

Test set construction – step 1

• In this first step a testing criterion is introduced – use simple and
context-dependent rule coverage, as defined for grammar-like
testing approach

• We can test not only “rule coverage” criteria, but also directly
states – for instance whether the number of a > threshold

• All these criteria form the basis of the test set generation

43

Test set construction – step 2

• Transform these testing criteria into never-claim or trap properties
by negation using LTLformulas

• For each rule ri∈R to test if it appears in a computation (rule
coverage): G!((ni >0) & (state=running)) – where ni means the number
of appearances of the rule ri and running is one of the finite states
considered

• To test that ri∈R appears in the context of rj∈R (context-
dependent rule coverage): G!((ni >0) & X(nj>0) & (state=running))

• We can test that on a given pathway the number of a > threshold
G!((a >threshold) & (state=running))

...

44

Test set construction – step 3

• When the LTL formula is false, a counterexample is returned

 Let Π: r1: s→ab; r2: a→c; r3: b→bc; r4: b→c;

G!((n1 >0) & X(n2>0) & (state=running)) -- checks that r2 appears in
the context of r1 in running state

A counter-example is returned corresponding to the computation

 s ⇒ ab ⇒ cc

utilising r1 first and then r2, r4

45

Test set generation - Example

Let Π: r1: s→ab; r2: a→c; r3: b→bc; r4: b→c

G!((ni >0) & (state=running)) – each rule is reached (i=1..4)
G!((ni >0) & X(nj>0) & (state=running)) – each contextual pair (ex r1, r2)
G!((ni >0) & (state=running) & F(state=halt)) – each rule is reached in a
terminal computation (i=1..4)
G!((ni >0) & X(nj>0) & (state=running) & F(state=halt)) – each contextual
pair (ex r1, r2) tested in a terminal computation

Integrity checks

G((state=running) ->(0<=a & a<=Max)) – a stays within the domain
G((state=running) ->(0<=n2 & n2<=Sup)) – n2, the number of
applications of r2 is within imposed limits

46

Limitations and some solutions
• Scalability (NuSMV can not cope with bigger domains for
variables, >50, or many iterations, >25; solution – use other tools,
SPIN – Ipate et al; 2010)

• Error prone when dealing with complex specifications (solution:
automatic way of generating LTL specifications – Ipate, Gheorghe,
Lefticaru; 2010)

• Readability of the results returned (solution: adequate tools)

• Limited repertoire of coverage criteria (testing strategies)

• Limited approximation of the system representation – considering
a fixed number of steps

• Integration with existing P system development environments (P-
lingua) – under consideration

47

Conclusions and further work

• Basic classes of P systems and simple testing criteria investigated

• Model based testing strategies adapted to P systems specifications
(theoretical basis elaborated, some empirical analysis provided,
promising results obtained)

• Investigate further testing options – initial candidates: mutation
testing (Ipate, Gheorghe; 2009), evolutionary techniques for testing
and evolving P systems: Research project (CNCSIS), PI- Ipate, co-
I's – Gheorghe, Lefticaru & investigations on state based models
(Lefticaru, Ipate; 2008, 2009)

• Develop appropriate tools

•Assess benefits and limitations w.r.t other similar verification and
validation approaches

48

Th anks!

Questi on s?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

