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Summary

• Software testing
– needs
– techniques

• P systems testing 
– coverage principle 
– grammar-like
– finite state machine (X-machine)
– model checking

• Further work and conclusions
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P systems in modelling and simulation

   In the last years there have been significant developments in using 
the P systems paradigm to model, simulate and formally verify 
various systems (biology, economics, linguistics , graphics, computer 
science etc) – Ciobanu, Păun, Perez-Jimenez, 2006, some special 
issues of BioSystems, Handbook of MC, Scholarpedia

• Software packages developed for some of these applications 
(P system web page http://ppage.psystems.eu) - P-lingua, Metabolic P 
systems, Stochastic P systems, IBW, P systems for reaction kinetics.

• Both formal verification and testing have been applied for some 
classes of P systems 

http://ppage.psystems.eu/
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Software testing

Software testing 

• is the process of checking software, to verify that it satisfies its 
requirements and to detect errors.
 

• consists of, but is not limited to, the process of executing a 
program or application with the intent of finding software bugs. 
(http://en.wikipedia.org/wiki/Software_testing)

 
Major testing activity

• Test case (test suite) generation: selection of test values most 
likely to find faults  
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The Triangle program

The aim of this program is to classify triangles. The program accepts 
three positive integers as lengths of the sides of a triangle. The program 
classifies the triangle into one of the following groups:

• Equilateral: all the sides have equal lengths (return 1)
• Isosceles: two sides have equal length, but not all three (return 2)
• Scalene: all the lengths are unequal (return 3)
• Impossible: the three lengths cannot be used to form a triangle, or form 
only a flat line (return 4)

Adapted from
http://www.cs.bris.ac.uk/Teaching/Resources/COMS12100/reports/triangle.html 
(appears in Myers’ book)
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Java implementation

int triangle(int a, int b, int c)
{    
   int mx, x, y;    
   mx = a; x = b; y = c;    
   if (mx < b)        
      {x = mx; mx = b;}    
   if (mx < c)        
      {y = mx; mx = c;}    
   if (mx >= x + y)    
      {return 4; // impossible}    
   if (a == b && b == c)     
      {return 1; // equilateral}    
   if (a == b || b == c || a == c)     
      {return 2; // isosceles}    
   return 3; // scalene
} 
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Coverage methods

• In structural testing a program is represented as a directed graph 
and various coverage criteria can be defined:

– Statement (node) coverage
– Branch (decision) coverage 
– Multiple condition coverage 
– etc 

 
• Coverage criteria can also be used in functional testing (especially 
for model based testing), e.g., rule coverage for specifications 
represented as context-free grammars – each production rule of the 
grammar is applied at least once; compilers, syntax-oriented tools. 
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Test generation based on a formal model

• Functional testing based on a formal specification (model)
     - test values can be derived in a rigorous manner 
     - test derivation can be automated

• Conformance testing: Assumption: the implementation under test 
(IUT) can be modelled by an unknown model, belonging to a 
known set – the fault model
 
• The test suite determines if the IUT conforms to the specification

• Example: FSM based techniques: state/transition cover, UIO, W, 
Wp, etc.
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Rule coverage based P system testing
 
Grammar-like testing*. One compartment P system, Π

 A test set T for Π consists of multisets such as for any rule r in Π 
there is u ∈ T such that u covers r (simple rule coverage)

u covers r: a→v iff there is w ⇒* xay ⇒r x’vy’ ⇒* u 

• Test application – checks whether all elements of the test set are 
computed by the implementation

• It will be considered that a P system model is given and an 
implementation of it is going to be tested

*M Gheorghe, F Ipate (2008) On testing P systems. LNCS, 5397, 2008, pp 173—188. 
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Example
Π has r1: s→ab; r2: a→c; r3: b→bc; r4: b→c and s initial multiset
      s
          r1                                         T={ab, bcc, ccc}; {bcc, ccc}; {ccc}
     ab                                       or
r2r3        r2r4                    T'={ab, bcc, cc}; {bcc, cc}
        bcc   cc
          r4                               T or T' - rule coverage
     ccc   

Implementations:
Π1: r1: s→ab; r2: a→λ; r3: b→c //can’t compute bcc, cc, ccc
Π2: r1: s→ab; r2: a→bc; r3: a→c; r4: b→c // computes both T, T'

Obs. bccc is not computed by Π2 but is produced by the model Π
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Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c, 
The rules r1 s→ab & r3 b →bc represent the direct contexts of the 
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

     s
        r1                                         
    ab                                      
r2r3        r2r4                   
        bcc   cc
  r4        r3                           context-dependent rule coverage
     ccc    bccc
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Context-dependent rule coverage

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c, 
The rules r1 s→ab & r3 b →bc represent the direct contexts of the 
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

      s
        r1                                         
     ab                                      
r2r3        r2r4                   
        bcc   cc
  r4          r3                           context-dependent rule coverage
     ccc    bccc
Π2: r1: s→ab; r2: a→bc; r3: a→c; r4: b→c //don’t compute bccc 
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Context-dependent rule coverage. Test set

• Each rule should have a cover in every of its direct context

Example: for Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c, 
The rules r1 s→ab & r3 b →bc represent the direct contexts of the 
rules r3 b→bc and r4 b→c; r1 s→ab direct context of r2 a→c

      s
        r1                                         
     ab                                      
r2r3        r2r4                   
        bcc   cc
  r4          r3                           context-dependent rule coverage
     ccc    bccc
Test sets: T={bcc, cc, ccc, bccc}; {cc, ccc, bccc}
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Multiple compartment P systems

• Rule coverage: 
(u1, …, un) covers ri: ai→vi iff
(w1,… wn) ⇒* (x1, …xiaiyi, …xn) ⇒ (x1

’, …xi
’viyi

’, …xn
’) ⇒*

(u1,… un) 

• Simple rule coverage is defined similarly to one compartment 

• Context-dependent rule coverage – consider evolution rules from 
the same cell and communication rules from the neighbouring cells:
r’: b→uav in Ri is direct context for r: a→x in Ri

r’’: c→u’(a,t)v’ in Rj (t is either in or out and i, j are neighbouring 
cells) is also direct context for r: a→x in Ri  
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Testing based on Finite State Machine*
• Build all the computations of the P system for a finite sequence of 
steps, k – represented as a tree

• Tree = DFA which accepts finite language U over alphabet A, 
composed of multisets of rules (labels of the tree arcs) 

• Construct a deterministic finite cover (DFC) for U – a minimal 
finite state machine that accepts all sequences in U and possibly 
sequences that are longer than any word of U (Theorem 4*)

• Generate a test set, T, over the P system's alphabet V, for a certain 
coverage principle (e.g. state or transition coverage) 

• Conformance testing for DFC (e.g. W method)

*F Ipate, M Gheorghe: Finite state based testing of P systems, Natural Computing, 
8(2009). 
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All computations for a given k

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c 

                                             s
                                                  r1
                                             ab
                                r2r3                         r2r4
                                    bcc          cc
                           r3              r4
                           bccc       ccc
                    r3             r4

                           bcccc       cccc

 k = 4 steps, obtain Dt – a DFA over the set of labels defining the 
multisets of rules applied {r1, r2r3, r2r4, r3, r4} accepting LDt
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DFC for LDt

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

                                             s
                                                  r1
                                             ab                       r1
                                r2r3                         r2r4
                                    bcc          cc
                           r3              r4
                           bccc       ccc                    r2r3               r2r4
                    r3             r4                                        
                           bcccc       cccc                                        r4
                                                    r3                    
                                                                      
                                                                    DFC, M, for LDt 
In general DFC (4) has less states than DFA (8) (also true for 
minimal FSM's)

q0

q1

q2 q3
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Coverage criteria for DFC Automata 

• Specification is a finite automaton with all states final.  

• State coverage S: for each state q there is u∈S and a path that 
reaches q such that u is computed from w through a computation 
defined by the path. 

 Transition coverage T: for each state q and each valid label of a 
transition from q (to q') there is u∈T and a path that reaches q'  and 
includes q such that u is computed from w through a computation 
defined by the path.
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W method for DFC Automata 
• Specification is a finite automaton with all states final.  

• Aim to show implementation behaves identically with the 
specification for all sequences of length less than or equal to an 
upper bound N.
 
• Characterization set W: distinguishes between every pair of 
states of the specification. 

• W method for DFC: sequences of minimum possible length are 
chosen to reach states or distinguish between states: Proper state 
cover and Strong characterization set (λ ∈ W)

• Test suite: (S A[m-n+1] W ) ∩ A[N], where A[k] = {λ} ∪… ∪ Ak
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Test set components. Example

                                             
                                                  
                                                                                               
                                              
                                         

                                               

                                                                      

q0

q1

q2

q3

1 S = {λ , 1, 11, 111}

T = {λ, 1, 11, 111, 1110}

W = {λ, 1, 11, 111}

Incorrect
S = {λ , 1, 11} –q3 not covered 
W = {λ , 111}

1

1

0
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Example. DFC for Π

                                             
                                                  
                                                                                               
                                              
                                         

                                               

                                                                      

q0

q1

q2 q3

r1

r2 r3 r2 r4
r3 r4

S = {λ , r1 , r1 . r2r3 , r1 . r2r4}

T = {λ , r1 , r1 . r2r3 , r1 . r2r4, 
r1 . r2r3 .r3, r1 . r2r3 .r4 } 

W = {λ , r1, r2r3 , r3}
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Test set for state cover - S

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

                                             s
                                                  r1
                                             ab                       
                                r2r3                         r2r4               r1
                                    bcc          cc
                           r3              r4
                           bccc       ccc                                     
                    r3             r4                             r2r3               r2r4                
                           bcccc       cccc             
                                                      r3                       r4
                                                                      
                                                                
                                                                     DFC, M, for LDt 

S = {λ , r1 , r1 . r2r3 , r1 . r2r4}; Ts={s, ab, bcc, cc}

q0

q1

q2 q3
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Test set for transition cover - T

Example. For Π, r1: s→ab; r2: a→c; r3: b→bc; r4: b→c; DFA is

                                             s
                                                  r1
                                             ab                       r1
                                r2r3                         r2r4
                                    bcc          cc
                           r3              r4
                           bccc       ccc                    r2r3                 r2r4
                    r3             r4                                        
                           bcccc       cccc                r3                     r4

                                                                      
                                                                     
                                                                      DFC, M, for LDt 

T = {λ , r1 , r1 . r2r3 , r1 . r2r4, r1 . r2r3 .r3, r1 . r2r3 .r4 }; Tt={s, ab, bcc, cc, bccc, ccc}

q0

q1

q2 q3
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Results so far...

 For grammar-like and FSM based testing strategies, test sets for Π
T1 ={ab, bcc, ccc} – simple rule coverage;
T2 ={bcc, cc, ccc, bccc} – context-dependent rule coverage;
Ts1 ={s, ab, bcc, cc} – state cover, k=3, 4, ...;
Ts2 ={s, ab, bcc, cc, bccc, ccc} – transition cover, k=3, 4, ...;
         T1 ⊂  T2 ⊂ Ts2 ;  Ts1 ⊂ Ts2 
• Context-dependent is better than simple rule coverage and 
transition cover outperforms state cover

• FSM based testing is better supported by FSM theory, produces in 
general better results, but depends on the number of computation 
steps (k); it requires more effort (build the DFC and then test sets)

• More elaborated test sets – take sequences of multisets (version of 
T1 ={ab·bcc, ab·ccc})
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Empirical analysis of the two approaches*

• Context dependent rule coverage achieves better detection than 
simple coverage (100% vs 98.75% in some cases), but this is way 
below the increase in the size complexity of the test set
• Both achieve better fault detection for sequences of multisets 
(increase between 3.75% to 21.06%)
• The performance of FSM based approaches depend heavily on k 
(for state coverage and k=2, values as low as 52.63% fault 
detection; for transition coverage and high values for k, it achieves 
at least 78.94% fault detection)
• When sequences of multisets are utilised, 100% in many case is 
achieved, irrespective of the approach
 
*R Lefticaru, M Gheorghe, F Ipate: An empirical evaluation of P system testing 
techniques, Natural Computing (to appear 2010)
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X-machine (Generalised FSM) based testing 

• X-machine based testing is well elaborated (more than 15 years) 
and codification of various classes of P systems as X-machines 
provided (Aguado et al, 2001; Kefalas et al, 2003)  

• Testing P systems using non-deterministic stream X-machines 
studied (Ipate, Gheorghe; ENTCS, 2008) – X-machine built 
similarly to DFA (a finite number of computation steps)

• Unfortunately the general theory of X-machines and the 
methodology of building X-machines from given P systems DO 
NOT provide a way to define suitable testing techniques for P 
systems as the X-machine representation does not adequately 
replicate the P system – many micro-steps
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Model based testing 

• Above presented approaches – grammar-like and FSM based 
testing, are model based techniques: the generation of the test set 
utilises a certain model  

• Two main difficulties faced
•      FSM and X-machine approaches require another model
•      It involves building suitable algorithms for test sets

• Question: are there other techniques that help building the test sets 
from a generic model?
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Model based testing 

• Above presented approaches – grammar-like and FSM based 
testing, are model based techniques: the generation of the test set 
utilises a certain model  

• Two main difficulties faced
•      FSM and X-machine approaches require another model
•      It involves building suitable algorithms for test sets

• Question: are there other techniques that help building the test sets 
from a generic model?

• Yes... model checking (Kripke structure representation) through 
counterexamples for properties that do not hold
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Test suite using model checking

A test suite is obtained by following the 3 steps (Fraser et al, 2009):

• Define the test purpose by identifying a testing criterion as 
features to be tested (reaching a state, traversing a sequence of 
states, getting a value, verifying a condition) 

• The features are specified as temporal logic formulas and then 
converted into never-claim conditions or trap properties; Examples: 
G !(state = s) or G !(x = val)

• The model checker verifies whether the never-claim or trap 
property holds. It it is false a counterexample is returned – this 
gives the exact path to state s or to where x becomes val

• Additionally, the P system is converted into a Kripke structure
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Kripke structure
• A system M = (S, H, I, L), where  

– S is a finite set of states
– I ⊆ S – initial states
– H ⊆ S ×S – left-total transition relation (for any s in S there is s' in S such 
that (s,s') in H)
– L is an interpretation – associating toeach state a set of atomic propositions 
true in the state

 Given a P system Π, a Kripke structure MΠ associated with Π  is 
constructed using the predicates 
MaxPar(u, u1, v1, n1, … um, vm, nm)  - m rules ui →vi  are used ni 
times, in maximal parallel mode
Apply(u, v, u1, v1, n1, … um, vm, nm) – v is obtained by the rules above

F Ipate, M Gheorghe, R Lefticaru: Test generation from P system using model 
checking, JLAP, 2010
F Ipate, M Gheorghe et al: An integrated approach to P systems formal 
verification (CMC11)  



40

Kripke structure - The basis of testing

• Similar to FSM based testing a model of a system, as a Kripke 
structure, K, is given and a (potentially faulty) model of the 
implementation under test, K', is provided 

Theorem 4 (Ipate, Gheorghe, Lefticaru)
(i) if a a property is satisfied then the implementation includes all 
the paths of the specification
(ii) if the property is false then there is a path which has a finite 
prefix in K and K' but in the next state the property is only true in 
the model  K, of the system
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Represent the P system as a Kripke structure

• Convert various classes of P systems (with rewriting and 
communication (non)-cooperative rules, with electrical charges, 
with dissolving rules; more than one compartment; maximal 
parallelism or asynchronous mode) to NuSMV (Ipate et al, 2010, 
CMC11 presentation etc); basic principles:
 
• Kripke structure states are P systems multisets – a finite subset; 
these are computed based on MaxPar  predicate (for maximal 
parallelism)

• Transitions between states are obtained utilising the Apply 
predicate 

• The model should contain some terminal state and an unexpected 
halting state – when some conditions are not fulfilled



42

Test set construction – step 1  

• In this first step a testing criterion is introduced – use simple and 
context-dependent rule coverage, as defined for grammar-like 
testing approach 

• We can test not only “rule coverage” criteria, but also directly  
states – for instance whether the number of a > threshold 

• All these criteria form the basis of the test set generation
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Test set construction – step 2  

• Transform these testing criteria into never-claim or trap properties 
by negation using LTLformulas
 

• For each rule ri∈R to test if it appears in a computation (rule 
coverage): G!((ni >0) & (state=running)) – where ni means the number 
of appearances of the rule  ri and running is one of the finite states 
considered

• To test that ri∈R appears in the context of rj∈R  (context-
dependent rule coverage): G!((ni >0) & X(nj>0) & (state=running))

• We can test that on a given pathway the number of a > threshold 
G!((a >threshold) & (state=running))

...
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Test set construction – step 3  

• When the LTL formula is false, a counterexample is returned

    Let Π:        r1: s→ab; r2: a→c; r3: b→bc; r4: b→c;

G!((n1 >0) & X(n2>0) & (state=running))  -- checks that r2  appears in 
the context of  r1  in running state 

A counter-example is returned corresponding to the computation

        s ⇒ ab ⇒ cc

utilising r1  first and then r2, r4
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Test set generation - Example 

Let Π:        r1: s→ab; r2: a→c; r3: b→bc; r4: b→c

G!((ni >0) & (state=running)) – each rule is reached (i=1..4) 
G!((ni >0) & X(nj>0) & (state=running)) – each contextual pair (ex r1, r2) 
G!((ni >0) & (state=running) & F(state=halt)) – each rule is reached in a 
terminal computation (i=1..4)
G!((ni >0) & X(nj>0) & (state=running) & F(state=halt)) – each contextual 
pair (ex r1, r2) tested in a terminal computation

Integrity checks 

G((state=running) ->(0<=a & a<=Max)) – a stays within the domain 
G((state=running) ->(0<=n2 & n2<=Sup)) – n2, the number of 
applications of r2  is within imposed limits 
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Limitations and some solutions
• Scalability (NuSMV can not cope with bigger domains for 
variables, >50, or many iterations, >25; solution – use other tools, 
SPIN – Ipate et al; 2010)

• Error prone when dealing with complex specifications  (solution: 
automatic way of generating LTL specifications – Ipate, Gheorghe, 
Lefticaru; 2010) 

• Readability of the results returned (solution: adequate tools) 
 
• Limited repertoire of coverage criteria (testing strategies)

• Limited approximation of the system representation – considering 
a fixed number of steps

• Integration with existing P system development environments (P-
lingua) – under consideration 
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Conclusions and further work

• Basic classes of P systems and simple testing criteria investigated 
 
• Model based testing strategies adapted to P systems specifications  
(theoretical basis elaborated, some empirical analysis provided, 
promising results obtained)

• Investigate further testing options – initial candidates: mutation 
testing (Ipate, Gheorghe; 2009), evolutionary techniques for testing 
and evolving P systems: Research project (CNCSIS), PI- Ipate, co-
I's – Gheorghe, Lefticaru & investigations on state based models 
(Lefticaru, Ipate; 2008, 2009)   

• Develop appropriate tools 

•Assess benefits and limitations w.r.t other similar verification and 
validation approaches
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Th anks!

Questi on s?
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