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Summary

*““Integrated” formal verification approach
« Steps in formally verifying basic P systems

*Transforming a P systems into a NuSMV specification (through a
Kripke structure)

Extracting properties from P-lingua traces

*\erifying properties



Steps In formally verifying a P system

Given a one-membrane P system, 77, build up the following steps

* Kripke structure — M, associated with /7; translating the rules
and the semantics of the /7 to M,

* specify — M, In NuSMV; states, transitions and transformations
are generated

extract properties — from P-lingua simulations extract invariants;
first, using P-lingua simulations, traces of execution are obtained
and then properties extracted using Daikon

query — the NuSMV system by using LTL statements; properties

regarding the system are formulated
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Kripke structure

M=(S,H,IL)
where S — finite set of states; | &S — initial states; H £cSx51s a
left-total transition relation (left-total - ¥5&S, 75’ €S, such that
(s,s’) € H); L Is an interpretation functions associating to each
state a set of atomic propositions true in that state.

In general a system with variables var,, ..., var,, and Val, the set
of values for var; has the set S={(v,,... v) | v; € Val.}, and
AP={(var;=Vv;) | v; e Val; , 1 <i <k}.

In what follows three types of states are built: normal, final and
halt (sink) states.



Kripke structure associated with a P system

Given I1=(V, 1, w, R) - one-membrane P system
with V having k symbols and
R containing simple rewriting rules r;: u; -v;,1 <1 <m;
the multisets will be recorded as vectors of integers u eNk,

The Kripke structure M, associated with /7 utilises two
predicates

MaxPar(u, Uy, vy, Ny, ... u,, Voo, N2), UeNK n.eN, 1 <i <m and
Apply(u, v, Uy, Vq, Ny, ... 1, Vi, D), UVENK, NieN, 1 <i <m.

MaxPar means a computation from u develops in maximally
parallel mode, r;: u; —v;, applied n; >0 times,1 <i <m to u.
Apply means that v is obtained from u.

— Dang, Ibarra et all, 2006



NuSMYV specification — maximal parallelism

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

MaxPar predicate = for each rule the number of symbols
occurring on the left hand side are consumed in a maximal
way (if t designs the total number of symbols available and
next(n;) the number of times r; is applied in a maximal way,
then t-next(n;)=0). So, for the above P systems the conditions

X-next(n,)=0 & y-next(n,)=0 & a-next(n;)=0 & b-next(n,)=0

Additional conditions characterise states and transitions.



NuSMYV specification — states & transitions

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

Apply predicate = requires to identify states and transitions (to get
a finite number of states, the multisets are restricted to a finite
set).

In a previous observation we mentioned three types of states —
normal, final and halt.

All normal states will be compacted in one state called running
(i.e., it contains all the values of the multisets u, that are within
the limits chosen, |u] <Max, no of rewritings in a step <MStep).



NuSMYV specification — states & transitions (2)

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,b—->ydd

state = running & next(state) = running & -- next state

next(x) =x-next(n,) + next(n;) & -- next multisets, x
next(y) =y-next(n,) + next(n,) & -y
next(a) =a-next(n,) + next(n;) & --a
next(b) =b-next(n,) + next(n,) & -Db
next(c) =c + next(n;) & - C
next(d) =d + 2*next(n,) --d

-- conditions to stay within running
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M, diagram

halt

running — {u] Ju] <Max, and no
more than MStep writings};

halt — abnormal behaviour: an u,
IS obtained such that |u] >Max or
>MStep writings used

final — terminal step occurs;
MaxPar has all n, =0



P-lingua traces and invariants extraction

For a (basic) P system represented in P-lingua execution
traces are obtained — values of the multisets

Conversion to Daikon inputs

Extraction of invariants and other properties (pre- and post-
conditions)

Tools utilised
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Example 1

Let 77=(V, /] w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

A computation

Xy = ab= xcydd = acbdd = xccydddd =... xc"yd?"= ac"bd?" ...
Invariants identified

2*c —d == 0 (2*orig(c) - orig (d) == 0)

aisone of {0, 1} —similar for b, x, y

¢ == 0 ==> orig(c)==0 — consequence pattern; similarly for d

In NuSMV these can be verified by G((c=0)->(c_old=0)) etc.
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Other types of P systems

A (basic) P system working in asynchronous mode (if 7/
works asynchronously then

next(n,) + next(n,) + next(n;) + next(n,) > 0)
1.e., at least one rule is applied; the transitions remain the same.

* When electrical charges are used then the maximal
parallelism is restricted to the rules available for specific
charge values.

* When more than a compartment is utilised then a suitable
codification for objects is applied.
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Example 2

Let 71,=(V, [[].],» XY, 4, R), where, V={a,b,c,d,x,y}, R contains
ri: X[1%—=/al*,, riy [19% = /o], 13 [a = xc]*,,
r,: [b —=ydd]*,, rs: [X]*—=> %1%, re: [y]*,—= Y%

A computation in 77, is very similar to the one in 77, but it uses
two compartments and electrical charges.

If we run either /7 or 77, in an asynchronous way then
2*c —d == 0 (2*orig(c) - orig (d) == 0)

IS no longer true, whereas

aisone of {0, 1} —similar for b, x, y

¢ == 0 ==> orig(c)==0 — consequence pattern; similar for d

remain valid and verifiable by NUSMV.
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Example — predator-prey

The non-deterministic variant, I7,,=(V, //, w, R), where,
V={a,b,x,y}, w=al00x1%0y10 R contains

roax > XX, r. Xy = Vyy, r;iy —-b
Invariants identified and proven by NuSMV
b == 0 ==> orig(h)==0
orig(@a)==0==>a==0

Obs. In the non-deterministic case there are no general oscillatory
processes that can be revealed.
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Achievements and drawbacks

Previous approach on model checking stochastic P systems
has been now extended to generic classes of P systems with
maximal parallelism.

Basic properties are found using Daikon and proved by
NuSMV.

Both are integrated within some tools that include P-lingua as
well.

Daikon fails to reveal more complex functions.
NuSMYV does not scale up well.

Other model checkers can be utilised (work on SPIN Is under

consideration).
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Cuestiarns?
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