An integrated approach to P systems
formal verification

Marian Gheorghe’2, Florentin Ipate?,

Raluca Lefticaru?, Ciprian Dragomir?

tUniversity of Sheffield

2University of Pitesti



Summary

*““Integrated” formal verification approach
« Steps in formally verifying basic P systems

*Transforming a P systems into a NuSMV specification (through a
Kripke structure)

Extracting properties from P-lingua traces

*\erifying properties



Steps In formally verifying a P system

Given a one-membrane P system, 77, build up the following steps

* Kripke structure — M, associated with /7; translating the rules
and the semantics of the /7 to M,

* specify — M, In NuSMV; states, transitions and transformations
are generated

extract properties — from P-lingua simulations extract invariants;
first, using P-lingua simulations, traces of execution are obtained
and then properties extracted using Daikon

query — the NuSMV system by using LTL statements; properties

regarding the system are formulated
3



Kripke structure

M=(S,H,IL)
where S — finite set of states; | &S — initial states; H £cSx51s a
left-total transition relation (left-total - ¥5&S, 75’ €S, such that
(s,s’) € H); L Is an interpretation functions associating to each
state a set of atomic propositions true in that state.

In general a system with variables var,, ..., var,, and Val, the set
of values for var; has the set S={(v,,... v) | v; € Val.}, and
AP={(var;=Vv;) | v; e Val; , 1 <i <k}.

In what follows three types of states are built: normal, final and
halt (sink) states.



Kripke structure associated with a P system

Given I1=(V, 1, w, R) - one-membrane P system
with V having k symbols and
R containing simple rewriting rules r;: u; -v;,1 <1 <m;
the multisets will be recorded as vectors of integers u eNk,

The Kripke structure M, associated with /7 utilises two
predicates

MaxPar(u, Uy, vy, Ny, ... u,, Voo, N2), UeNK n.eN, 1 <i <m and
Apply(u, v, Uy, Vq, Ny, ... 1, Vi, D), UVENK, NieN, 1 <i <m.

MaxPar means a computation from u develops in maximally
parallel mode, r;: u; —v;, applied n; >0 times,1 <i <m to u.
Apply means that v is obtained from u.

— Dang, Ibarra et all, 2006



NuSMYV specification — maximal parallelism

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

MaxPar predicate = for each rule the number of symbols
occurring on the left hand side are consumed in a maximal
way (if t designs the total number of symbols available and
next(n;) the number of times r; is applied in a maximal way,
then t-next(n;)=0). So, for the above P systems the conditions

X-next(n,)=0 & y-next(n,)=0 & a-next(n;)=0 & b-next(n,)=0

Additional conditions characterise states and transitions.



NuSMYV specification — states & transitions

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

Apply predicate = requires to identify states and transitions (to get
a finite number of states, the multisets are restricted to a finite
set).

In a previous observation we mentioned three types of states —
normal, final and halt.

All normal states will be compacted in one state called running
(i.e., it contains all the values of the multisets u, that are within
the limits chosen, |u] <Max, no of rewritings in a step <MStep).



NuSMYV specification — states & transitions (2)

Let 771=(V, 1, w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,b—->ydd

state = running & next(state) = running & -- next state

next(x) =x-next(n,) + next(n;) & -- next multisets, x
next(y) =y-next(n,) + next(n,) & -y
next(a) =a-next(n,) + next(n;) & --a
next(b) =b-next(n,) + next(n,) & -Db
next(c) =c + next(n;) & - C
next(d) =d + 2*next(n,) --d

-- conditions to stay within running

8



M, diagram

halt

running — {u] Ju] <Max, and no
more than MStep writings};

halt — abnormal behaviour: an u,
IS obtained such that |u] >Max or
>MStep writings used

final — terminal step occurs;
MaxPar has all n, =0



P-lingua traces and invariants extraction

For a (basic) P system represented in P-lingua execution
traces are obtained — values of the multisets

Conversion to Daikon inputs

Extraction of invariants and other properties (pre- and post-
conditions)

Tools utilised

10



Example 1

Let 77=(V, /] w, R), where, V={a,b,c,d,x,y}, w=xy, R contains
ri:x—a, r,.y—br;:a—-»xcr,; b—>ydd

A computation

Xy = ab= xcydd = acbdd = xccydddd =... xc"yd?"= ac"bd?" ...
Invariants identified

2*c —d == 0 (2*orig(c) - orig (d) == 0)

aisone of {0, 1} —similar for b, x, y

¢ == 0 ==> orig(c)==0 — consequence pattern; similarly for d

In NuSMV these can be verified by G((c=0)->(c_old=0)) etc.

11



Other types of P systems

A (basic) P system working in asynchronous mode (if 7/
works asynchronously then

next(n,) + next(n,) + next(n;) + next(n,) > 0)
1.e., at least one rule is applied; the transitions remain the same.

* When electrical charges are used then the maximal
parallelism is restricted to the rules available for specific
charge values.

* When more than a compartment is utilised then a suitable
codification for objects is applied.

12



Example 2

Let 71,=(V, [[].],» XY, 4, R), where, V={a,b,c,d,x,y}, R contains
ri: X[1%—=/al*,, riy [19% = /o], 13 [a = xc]*,,
r,: [b —=ydd]*,, rs: [X]*—=> %1%, re: [y]*,—= Y%

A computation in 77, is very similar to the one in 77, but it uses
two compartments and electrical charges.

If we run either /7 or 77, in an asynchronous way then
2*c —d == 0 (2*orig(c) - orig (d) == 0)

IS no longer true, whereas

aisone of {0, 1} —similar for b, x, y

¢ == 0 ==> orig(c)==0 — consequence pattern; similar for d

remain valid and verifiable by NUSMV.

13



Example — predator-prey

The non-deterministic variant, I7,,=(V, //, w, R), where,
V={a,b,x,y}, w=al00x1%0y10 R contains

roax > XX, r. Xy = Vyy, r;iy —-b
Invariants identified and proven by NuSMV
b == 0 ==> orig(h)==0
orig(@a)==0==>a==0

Obs. In the non-deterministic case there are no general oscillatory
processes that can be revealed.

14



Achievements and drawbacks

Previous approach on model checking stochastic P systems
has been now extended to generic classes of P systems with
maximal parallelism.

Basic properties are found using Daikon and proved by
NuSMV.

Both are integrated within some tools that include P-lingua as
well.

Daikon fails to reveal more complex functions.
NuSMYV does not scale up well.

Other model checkers can be utilised (work on SPIN Is under

consideration).
15



Cuestiarns?

16



