
An integrated approach to P systems

formal verification

Marian Gheorghe1,2, Florentin Ipate2,

Raluca Lefticaru2, Ciprian Dragomir1

1University of Sheffield

2University of Pitesti

Summary

•“Integrated” formal verification approach

• Steps in formally verifying basic P systems

•Transforming a P systems into a NuSMV specification (through a

Kripke structure)

•Extracting properties from P-lingua traces

•Verifying properties

2

Steps in formally verifying a P system

Given a one-membrane P system, Π, build up the following steps

• Kripke structure – MΠ associated with Π; translating the rules

and the semantics of the Π to MΠ

• specify – MΠ in NuSMV; states, transitions and transformations

are generated

•extract properties – from P-lingua simulations extract invariants;

first, using P-lingua simulations, traces of execution are obtained

and then properties extracted using Daikon

•query – the NuSMV system by using LTL statements; properties

regarding the system are formulated
3

Kripke structure

M = (S, H, I, L)

where S – finite set of states; I  S – initial states; H  SS is a

left-total transition relation (left-total - sS, s’S, such that

(s,s’) H); L is an interpretation functions associating to each

state a set of atomic propositions true in that state.

In general a system with variables var1,…, vark, and Vali the set

of values for vari has the set S={(v1,… vk) | vi  Vali}, and

AP={(vari=vi) | vi  Vali , 1  i  k}.

In what follows three types of states are built: normal, final and

halt (sink) states.

4

Kripke structure associated with a P system

Given Π=(V, , w, R) - one-membrane P system

with V having k symbols and

R containing simple rewriting rules ri: ui vi,1  i  m;

the multisets will be recorded as vectors of integers uNk.

The Kripke structure MΠ associated with Π utilises two

predicates

MaxPar(u, u1, v1, n1,… um, vm, nm), uNk, niN, 1  i  m and

Apply(u, v, u1, v1, n1,… um, vm, nm), u,vNk, niN, 1  i  m.

MaxPar means a computation from u develops in maximally

parallel mode, ri: ui vi, applied ni  0 times,1  i  m to u.

Apply means that v is obtained from u.

– Dang, Ibarra et all, 2006

5

NuSMV specification – maximal parallelism

Let Π=(V, , w, R), where, V={a,b,c,d,x,y}, w=xy, R contains

r1: x a, r2: y b, r3: a xc, r4: b ydd

MaxPar predicate = for each rule the number of symbols

occurring on the left hand side are consumed in a maximal

way (if t designs the total number of symbols available and

next(ni) the number of times ri is applied in a maximal way,

then t-next(ni)=0). So, for the above P systems the conditions

x-next(n1)=0 & y-next(n2)=0 & a-next(n3)=0 & b-next(n4)=0

Additional conditions characterise states and transitions.

6

NuSMV specification – states & transitions

Let Π=(V, , w, R), where, V={a,b,c,d,x,y}, w=xy, R contains

r1: x a, r2: y b, r3: a xc, r4: b ydd

Apply predicate = requires to identify states and transitions (to get

a finite number of states, the multisets are restricted to a finite

set).

In a previous observation we mentioned three types of states –

normal, final and halt.

All normal states will be compacted in one state called running

(i.e., it contains all the values of the multisets u, that are within

the limits chosen, |u|  Max, no of rewritings in a step  MStep).

7

NuSMV specification – states & transitions (2)

Let Π=(V, , w, R), where, V={a,b,c,d,x,y}, w=xy, R contains

r1: x a, r2: y b, r3: a xc, r4: b ydd

state = running & next(state) = running & -- next state

next(x) =x-next(n1) + next(n3) & -- next multisets, x

next(y) =y-next(n2) + next(n4) & -- y

next(a) =a-next(n3) + next(n1) & -- a

next(b) =b-next(n4) + next(n2) & -- b

next(c) =c + next(n3) & -- c

next(d) =d + 2*next(n3) -- d

... -- conditions to stay within running

8

MΠ diagram

q0

q1

q2 q3

r2 r3 r2 r4
r3 r4

9

running

haltfinal

running – {u| |u|  Max, and no

more than MStep writings};

halt – abnormal behaviour: an u,

is obtained such that |u| >Max or

>MStep writings used

final – terminal step occurs;

MaxPar has all ni =0

P-lingua traces and invariants extraction

• For a (basic) P system represented in P-lingua execution

traces are obtained – values of the multisets

• Conversion to Daikon inputs

• Extraction of invariants and other properties (pre- and post-

conditions)

• Tools utilised

10

Example 1

Let Π=(V, [], w, R), where, V={a,b,c,d,x,y}, w=xy, R contains

r1: x a, r2: y b, r3: a xc, r4: b ydd

A computation

xy ab xcydd acbdd xccydddd… xcnyd2n acnbd2n …

Invariants identified

2*c – d == 0 (2*orig(c) - orig (d) == 0)

a is one of {0, 1} – similar for b, x, y

c == 0 ==> orig(c)==0 – consequence pattern; similarly for d

In NuSMV these can be verified by G((c=0)->(c_old=0)) etc.

11

Other types of P systems

• A (basic) P system working in asynchronous mode (if Π

works asynchronously then

next(n1) + next(n2) + next(n3) + next(n4) > 0)

i.e., at least one rule is applied; the transitions remain the same.

• When electrical charges are used then the maximal

parallelism is restricted to the rules available for specific

charge values.

• When more than a compartment is utilised then a suitable

codification for objects is applied.

12

Example 2

Let Π1=(V, [[]2]1, xy, , R), where, V={a,b,c,d,x,y}, R contains

r1: x[]0
2 [a]+

2, r2: y []0
2  [b]+

2, r3: [a xc]+
2,

r4: [b ydd]+
2, r5: [x]+

2 x[]0
2 , r6: [y]+

2 y[]0
2

A computation in Π1 is very similar to the one in Π, but it uses

two compartments and electrical charges.

If we run either Π or Π1 in an asynchronous way then

2*c – d == 0 (2*orig(c) - orig (d) == 0)

is no longer true, whereas

a is one of {0, 1} – similar for b, x, y

c == 0 ==> orig(c)==0 – consequence pattern; similar for d

remain valid and verifiable by NuSMV.
13

Example – predator-prey

The non-deterministic variant, ΠPP=(V, [], w, R), where,

V={a,b,x,y}, w=a100x100y10, R contains

r1: ax xx, r2: xy yy, r3: y b

Invariants identified and proven by NuSMV

b == 0 ==> orig(b)==0

orig(a)==0 ==> a== 0

Obs. In the non-deterministic case there are no general oscillatory

processes that can be revealed.

14

Achievements and drawbacks

• Previous approach on model checking stochastic P systems

has been now extended to generic classes of P systems with

maximal parallelism.

• Basic properties are found using Daikon and proved by

NuSMV.

• Both are integrated within some tools that include P-lingua as

well.

• Daikon fails to reveal more complex functions.

• NuSMV does not scale up well.

• Other model checkers can be utilised (work on SPIN is under

consideration).
15

Questions?

16

