An integrated approach to P systems formal verification

Marian Gheorghe^{1,2}, Florentin Ipate², Raluca Lefticaru², Ciprian Dragomir¹ ¹University of Sheffield ²University of Pitesti

- •"Integrated" formal verification approach
- Steps in formally verifying basic P systems
- •Transforming a P systems into a NuSMV specification (through a Kripke structure)
- •Extracting properties from P-lingua traces
- •Verifying properties

Given a one-membrane P system, Π , build up the following steps

• Kripke structure – M_{Π} associated with Π ; translating the rules and the semantics of the Π to M_{Π}

• specify $-M_{\Pi}$ in NuSMV; states, transitions and transformations are generated

•extract properties – from P-lingua simulations extract invariants; first, using P-lingua simulations, traces of execution are obtained and then properties extracted using Daikon

•query – the NuSMV system by using LTL statements; properties regarding the system are formulated

M = (S, H, I, L)

where S – finite set of states; $I \subseteq S$ – initial states; $H \subseteq S \times S$ is a left-total transition relation (left-total - $\forall s \in S, \exists s' \in S$, such that $(s,s') \in H$); L is an interpretation functions associating to each state a set of atomic propositions true in that state.

In general a system with variables $var_1, ..., var_k$, and Val_i the set of values for var_i has the set $S = \{(v_1, ..., v_k) | v_i \in Val_i\}$, and $AP = \{(var_i = v_i) | v_i \in Val_i, 1 \le i \le k\}$.

In what follows three types of states are built: normal, final and halt (sink) states.

Kripke structure associated with a P system

Given $\Pi = (V, \mu, w, R)$ - one-membrane P system with V having k symbols and R containing simple rewriting rules $r_i: u_i \rightarrow v_i, 1 \le i \le m$; the multisets will be recorded as vectors of integers $u \in N^k$.

The Kripke structure M_{Π} associated with Π utilises two predicates $MaxPar(u, u_1, v_1, n_1, ..., u_m, v_m, n_m), u \in N^k, n_i \in N, 1 \le i \le m$ and $Apply(u, v, u_1, v_1, n_1, ..., u_m, v_m, n_m), u, v \in N^k, n_i \in N, 1 \le i \le m$.

MaxPar means a computation from *u* develops in maximally parallel mode, $r_i: u_i \rightarrow v_i$, applied $n_i \ge 0$ times, $1 \le i \le m$ to *u*. *Apply* means that *v* is obtained from *u*.

– Dang, Ibarra et all, 2006

Let $\Pi = (V, \mu, w, R)$, where, $V = \{a, b, c, d, x, y\}$, w = xy, R contains $r_1: x \rightarrow a, r_2: y \rightarrow b, r_3: a \rightarrow xc, r_4: b \rightarrow ydd$

MaxPar predicate = for each rule the number of symbols occurring on the left hand side are consumed in a maximal way (if *t* designs the total number of symbols available and $next(n_i)$ the number of times r_i is applied in a maximal way, then *t*-next(n_i)=0). So, for the above P systems the conditions

$$x$$
-next $(n_1)=0$ & y -next $(n_2)=0$ & a -next $(n_3)=0$ & b -next $(n_4)=0$

Additional conditions characterise states and transitions.

Let $\Pi = (V, \mu, w, R)$, where, $V = \{a, b, c, d, x, y\}$, w = xy, R contains $r_1: x \rightarrow a, r_2: y \rightarrow b, r_3: a \rightarrow xc, r_4: b \rightarrow ydd$

Apply predicate = requires to identify states and transitions (to get a finite number of states, the multisets are restricted to a finite set).

In a previous observation we mentioned three types of states – normal, final and halt.

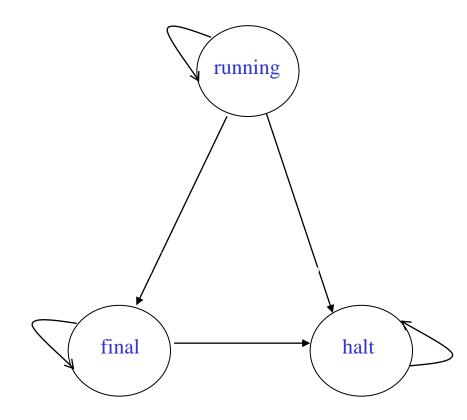
All normal states will be compacted in one state called running (i.e., it contains all the values of the multisets u, that are within the limits chosen, $|u| \leq Max$, no of rewritings in a step $\leq MStep$).

NuSMV specification – states & transitions (2)

Let
$$\Pi = (V, \mu, w, R)$$
, where, $V = \{a, b, c, d, x, y\}$, $w = xy$, R contains
 $r_1: x \rightarrow a, r_2: y \rightarrow b, r_3: a \rightarrow xc, r_4: b \rightarrow ydd$
state = running & next(state) = running & -- next state
next(x) = x-next(n_1) + next(n_3) & -- next multisets, x
next(y) = y-next(n_2) + next(n_4) & -- y
next(a) = a-next(n_3) + next(n_1) & -- a
next(b) = b-next(n_4) + next(n_2) & -- b
next(c) = c + next(n_3) & -- c
next(d) = d + 2*next(n_3) & -- d

. . .

-- conditions to stay within running



running $- \{u | |u| \le Max$, and no more than *MStep* writings};

halt – abnormal behaviour: an u, is obtained such that |u| > Max or >MStep writings used

final – terminal step occurs; MaxPar has all $n_i = 0$

- For a (basic) P system represented in P-lingua execution traces are obtained values of the multisets
- Conversion to Daikon inputs
- Extraction of invariants and other properties (pre- and post- conditions)
- Tools utilised

Example 1

Let $\Pi = (V, [], w, R)$, where, $V = \{a, b, c, d, x, y\}$, w = xy, R contains $r_1: x \to a, r_2: y \to b, r_3: a \to xc, r_4: b \to ydd$

A computation

 $xy \Rightarrow ab \Rightarrow xcydd \Rightarrow acbdd \Rightarrow xccydddd \Rightarrow \dots xc^n yd^{2n} \Rightarrow ac^n bd^{2n} \dots$

Invariants identified

$$2*c - d == 0$$
 ($2*orig(c) - orig(d) == 0$)

a is one of $\{0, 1\}$ – similar for *b*, *x*, *y*

c == 0 ==> orig(c) == 0 - consequence pattern; similarly for d

In NuSMV these can be verified by $G((c=0)->(c_old=0))$ etc.

• A (basic) P system working in asynchronous mode (if Π works asynchronously then

 $next(n_1) + next(n_2) + next(n_3) + next(n_4) > 0)$

i.e., at least one rule is applied; the transitions remain the same.

- When electrical charges are used then the maximal parallelism is restricted to the rules available for specific charge values.
- When more than a compartment is utilised then a suitable codification for objects is applied.

Example 2

Let $\Pi_1 = (V, [[]_2]_1, xy, \lambda, R)$, where, $V = \{a, b, c, d, x, y\}$, R contains $r_1: x[]_2^0 \rightarrow [a]_2^+, r_2: y[]_2^0 \rightarrow [b]_2^+, r_3: [a \rightarrow xc]_2^+,$ $r_4: [b \rightarrow ydd]_2^+, r_5: [x]_2^+ \rightarrow x[]_2^0, r_6: [y]_2^+ \rightarrow y[]_2^0$

A computation in Π_1 is very similar to the one in Π , but it uses two compartments and electrical charges.

If we run either Π or Π_1 in an asynchronous way then

$$2*c - d == 0 (2*orig(c) - orig(d) == 0)$$

is no longer true, whereas

a is one of $\{0, 1\}$ – similar for *b*, *x*, *y*

c == 0 ==> orig(c) == 0 - consequence pattern; similar for d

remain valid and verifiable by NuSMV.

The non-deterministic variant, $\Pi_{PP} = (V, [], w, R)$, where, $V = \{a, b, x, y\}, w = a^{100}x^{100}y^{10}, R \text{ contains}$ $r_1: ax \to xx, r_2: xy \to yy, r_3: y \to b$

Invariants identified and proven by NuSMV

$$b == 0 == > orig(b) == 0$$

$$orig(a) == 0 == > a == 0$$

Obs. In the non-deterministic case there are no general oscillatory processes that can be revealed.

Achievements and drawbacks

- Previous approach on model checking stochastic P systems has been now extended to generic classes of P systems with maximal parallelism.
- Basic properties are found using Daikon and proved by NuSMV.
- Both are integrated within some tools that include P-lingua as well.
- Daikon fails to reveal more complex functions.
- NuSMV does not scale up well.
- Other model checkers can be utilised (work on SPIN is under consideration).

Questions?