On the Expressiveness Power of Membrane

Systems Working in Accepting Mode

Roberto Barbuti ', Andrea Maggiolo Schettini ',
Paolo Milazzo ', Simone Tini 2

"Universita di Pisa, Pisa, ltaly
2Universita dell'lnsubria, Como-Varese, Italy

Jena, August 25th, 2010

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

The expressiveness of several classes of P Systems viewed as
generators of multisets is well known.

Our aim is to study the expressiveness of some classes of P
Systems viewed as acceptors of multisets.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

A membrane system I is given by
I_I - (V,IU,,W17...,Wn,R1,...’Rn)

where:
@ Vs an alphabet whose elements are called objects;

@ 1 C N x Nis a membrane structure, such that (11, k) € 1
denotes that the membrane labeled by £ is contained in
the membrane labeled by /;;

@ w; with 1 < j < nare strings from V* representing multisets
over V associated with the membranes 1, ..., nof u;

@ R; with 1 <j < nare finite sets of evolution rules
associated with the membranes 1, ..., n of p.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

Assume V partitioned into ¥ and the set of control objects C.

Every P system with promoters can be mapped to an
equivalent flat (i.e. with a single membrane) P system.

@ Z.Qi, J. You, H. Mao, WMC 2003.

@ L. Bianco, V. Manca, WMC 2005.

@ R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini,
Fundamenta Informaticae 87, 2008.

Here equivalent means that the two P Systems compute by
having, step by step, the same multisets over ¥ in the skin
membrane.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

Definition
A flat generator over ¥ is a P system

ﬂ:(ZUC,(ZJ,W1,R1)

A multiset of objects w over ¥ is generated by I iff there exists
a multiset w’ over C and a final configuration that can be
reached having w U w’ as multiset of objects.

Definition
A flat acceptor over X is a P system

n:(ZUCU{T}vwaW1>R1)

A multiset of objects w over ¥ is accepted by I iff by adding w
to wy and by starting the computation, a final configuration can
be reached with T appearing in the membrane.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

8 classes of P Systems

P(coo/ncoo, ndet/det, pro/npro):
@ coo: cooperative rules; ncoo: no cooperative rules.
@ ndet: nondeterminism; det: determinism.
@ pro: promoters, npro: no promoters.

16 classes of languages

PsPy(coo/ncoo, ndet/det, pro/ nproo):
@ P stays for "Parikh set”
@ x is ”g” for generators and "a” for acceptors.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini

Expressiveness of Acceptor Membrane Systems

Assume a class of P Systems C accepting/generating a class
of languages L.
Assume a class of P Systems C’ accepting/generating a class
of languages £’.

We write £ = L' iff there exists an encoding from C to C/,
namely, given any N € C accepting/generating a language L,
we can map it to some N’ € C’ accepting/generating L. This
implies that (but, in general, is not equivalent to) £ C £’

We write £ < £ iffboth £L = £ and £' = L.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)

Il Il Il
PsRE PsPg(coo, ndet, pro) PsPgy(coo, ndet, npro) PsPgy(ncoo, ndet, pro)

PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
I
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U U U U
Ly =PsPg(coo, det, pro) = PsPgy(coo, det, npro) = PsPg4(ncoo, det, pro) = PsPq(ncoo, det, npro)

where:
Q@ Li={Ww|IANWNA£DAWNN=0}U{w|3IN.wnN=0}u {2}
@ L, = {{w} | wis amultiset} U {2}

@ [jis the least set containing {a" | 3k. n > k} closed w.r.t. complementation,
finite union and finite intersection.

Expressiveness of Acceptor Membrane Systems

Let us give an hint of some of these results.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPa(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)

Expressiveness of Acceptor Membrane Systems

We map a generator N = (X UC, 0, w, R) € P(ncoo, ndet, pro)
into an equivalent acceptor Ny = (X5 UCaU{T}, 0, wa, Ra).
Idea: Rename all objects a of 1 as &, embed the N so modified
into My, generate a multiset and check if it coincides with the
input of M:

@ Given any input u, use I1to generate a multiset v'.

© When I has terminated, start the comparison between u
and v'.

© If u= V' then accept u. The nondeterminism ensures that
all multisets generated by I1 can be considered.

Observation: we have to check when 1 has terminated and we
have to start the comparison.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

@ Embed I into M, by renaming all ain M as &’:
w2 w and Ry D {d — Vg|ys.t. a— v|pisarulein R}

Ra2{g — A}
In this way, M, generates a multiset ' iff I generates u.

Now, if the input to N4 is u then I, should accept it, since
M, should accept exactly the multisets generated by I1.

Object g means that I is still working.

So, we have to check if the input and the multiset
generated by I are the same. Such a checking will be
enabled only when 1 terminates, i.e. when g disappears.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

Q@ {d - Vg|lys.t.a—v|pisarulein RIU{g —)
P p

@ Add multiset x1g to w, and rules:
X—=X|1g X =Xz x—=5s 1-2 21|

Until I is working, object g is generated by rules added at
ltem 1.

When 1 terminates, g is no more generated, and s is
produced.

Object s triggers the comparison between the input and
the object generated by 1.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

Q@ {&d - Vglpsta—pvisarulein R}
Q@ x—X|g X=Xz x—=8 g—XA 122 2— |
© Add objects 0 and T to w, and rules:

0—-1s 1—2 2—3 {3—=1pns|acxr,dcy’}

{a—aylackt} {a—Aflackt}
{d —dlflacx} {d—-Ajlacx}

(T = Mgl ABeCl {T—Nyps|A,BeC}
(T=NglAeC} {T—),3/AcC}

(T = Tlas | AA€C)
(A=)Nz|AcC} (A=)Nz|AeC)

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPa(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)

Expressiveness of Acceptor Membrane Systems

As in the case of P(ncoo, ndet, pro) we embed a generator into
an acceptor and we compare the input with a generated
multiset. ltems 1 and 2 are as in the previous case, the
comparison (i.e. ltem 3) is simpler due to cooperative rules:

Q {V—-Vglps tu—pvisarulein R}U{g — A}
Q@ x—Xlg X=Xz x—=s) 152 21|y

© Add object T to w, and cooperative rules:

{ad — Nsst ae ¥}
{aT — \sst. ae X}
{dT — Nsst acX}

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsP;(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)

Expressiveness of Acceptor Membrane Systems

Also in this case we embed the generator N = (X UC, 0, w, R)
into an equivalent acceptor Ny = (X5 UCaU{T}, 0, wa, Ra).
@ W Cwytewsand T € wa.
@ t — rs € R,. Object s triggers the comparison.
@ The work by N is simulated by a loop with 3 steps:
Q@ R.O{U V'V tU - V'V'"'s. t.u— visarulein R}
Q R.D{a"T - stacr}ju{t -t'tu{ad —a"|ac
>
Q Ft’i o{a"a" —astacriu{t -t}
o If t — rsfires before the loop terminates, rule &"'rT — A
removes T and the computation is not accepting.
@ Otherwise, after the loop the comparison starts:
{sad —s|aeX}uU{sal - \|lacexr}u{sdT —\|ac
>}

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
KD Il KD
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPgy(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
Il l
PsSRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) D PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U @] @] @]
Ly =PsPg(coo, det, pro) = PsPgy(coo, det, npro) = PsPg4(ncoo, det, pro) = PsPq(ncoo, det, npro)

where L1 ={w |[FIAN.wNAZDAWNN=0}U{w|3IN.wNnN=0}u{a}

Expressiveness of Acceptor Membrane Systems

@ An acceptor in P(ncoo, det, npro) for {w | 3ALN.wnNA#OAwnNN = (0} has
no control object and rules {a — T |a€ A} and {b — b | b e N}.

@ An acceptor in P(ncoo, det, npro) for {w | IN. w N N = 0} contains initially an
occurrence of T and has rules {b — b | b € N}.

@ To see that PsPas(ncoo, ndet, npro) C L1, take any acceptor
N € P(ncoo, ndet, npro).
If it contains a rule of the form T — u, for any u, then Ps(M) = 0, and 0 € L.
Otherwise, let G be the graph having a node for each object in X U C and an
arch from ato b if there is a rule a — u with b € u.
Let N be the set of the objects a € ¥ such that all paths from a are infinite, i.e.
a—-.-—a —...— a forsomed.
Let A be the set of the objects a € ¥ such that at least one path from a is finite
andleadsto T,ie.a— --- — T.
If T is an initial object in N then a multiset is accepted iff it gives rise to a finite
computation, because no rule can remove T and the final configuration, if
reached, contains T for sure. Therefore, Ps(M) = {w | wN N = 0}.
If T is not initially in M, then a multiset is accepted iff it gives rise to a finite
computation that introduces T in one of its steps. Therefore,
Ps(M ={w|wnA#0AwnNN=0}.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il KD
PsRE =*PsPgy(coo, ndet, pro) =* PsPg(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
[
L3 PsPa(ncoo, ndet, npro)
l
PsSRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U @] @] @]
Ly =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)

Expressiveness of Acceptor Membrane Systems

We map a 3-register machine M to an equivalent acceptor My, in P(coo, det, npro).
Let Ry, Ro, R be the three registers of M, and 0 < i < m be the instructions.

The idea is to represent a configuration (i, A, B, C) with multiset (ia*b5cC).
Instruction i : R4+, j is simulated by rule i — aj.

Instruction i : Ry—, j, k is simulated by rules
i—xyi ax—x Yi—=y yixi—j yixi—k.

Instructions over R, and R are analogous, we simply replace any occurrence of a with
b or c, respectively.

Finally, we need these rules to check that configuration (0, 0, 0, 0) has been reached:

0—-T Ta— A b — X Tc— A.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini Expressiveness of Acceptor Membrane Systems

PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPg(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) D PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)

Expressiveness of Acceptor Membrane Systems

Take any N = (X U C, 0, w, R) € P(coo, det, pro) with R = {ry,...,rg}.
Idea: rewrite any r; = u; — Vvi|p, as r/ = Uip; — Vipj-
This requires that u; N p; = 0: if not, rewrite first r; as u; — Vilp\ y;-

By moving promoters to left hand sides of rules we may introduce nondeterminism.
(For example, by trasforming rules a — d|c and b — e|¢ into ac — dc and bc — ec.)
So, rewrite r/ as iu;p; — v;p;, where 1 < i < k are new control objects that must be
introduced in sequence.

If v; N u; # 0 then performing r/ may trigger r] itself. So, rewrite r/ as iujp; — v/’pj.
We may run r/ more than once: rewrite it as i/’u/p; — v/'p/i"”’ and add rules:

R

i '////7, i N i7 I'/I'/NI N i+ 1}

{i — I',I'”,I —

So, we simulate an original computation step by first running ry, then r}, and so on.
We also require rules for:

@ Map all objects ato & before object 1 is introduced.

@ Map all & not consumed by rules and all & introduced by rules to a.

Tini Expressiveness of Acceptor Membrane Systems

	

