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The expressiveness of several classes of P Systems viewed as
generators of multisets is well known.

Our aim is to study the expressiveness of some classes of P
Systems viewed as acceptors of multisets.
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A membrane system I is given by
I_I - (V,IU,,W17...,Wn,R1,...’Rn)

where:
@ Vs an alphabet whose elements are called objects;

@ 1 C N x Nis a membrane structure, such that (11, k) € 1
denotes that the membrane labeled by £ is contained in
the membrane labeled by /;;

@ w; with 1 < j < nare strings from V* representing multisets
over V associated with the membranes 1, ..., nof u;

@ R; with 1 <j < nare finite sets of evolution rules
associated with the membranes 1, ..., n of p.
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Assume V partitioned into ¥ and the set of control objects C.

Every P system with promoters can be mapped to an
equivalent flat (i.e. with a single membrane) P system.

@ Z.Qi, J. You, H. Mao, WMC 2003.

@ L. Bianco, V. Manca, WMC 2005.

@ R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini,
Fundamenta Informaticae 87, 2008.

Here equivalent means that the two P Systems compute by
having, step by step, the same multisets over ¥ in the skin
membrane.
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Definition
A flat generator over ¥ is a P system

ﬂ:(ZUC,(ZJ,W1,R1)

A multiset of objects w over ¥ is generated by I iff there exists
a multiset w’ over C and a final configuration that can be
reached having w U w’ as multiset of objects.

Definition
A flat acceptor over X is a P system

n:(ZUCU{T}vwaW1>R1)

A multiset of objects w over ¥ is accepted by I iff by adding w
to wy and by starting the computation, a final configuration can
be reached with T appearing in the membrane.
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8 classes of P Systems

P(coo/ncoo, ndet/det, pro/npro):
@ coo: cooperative rules; ncoo: no cooperative rules.
@ ndet: nondeterminism; det: determinism.
@ pro: promoters, npro: no promoters.

16 classes of languages

PsPy(coo/ncoo, ndet/det, pro/ nproo):
@ P stays for "Parikh set”
@ x is ”g” for generators and "a” for acceptors.
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Assume a class of P Systems C accepting/generating a class
of languages L.
Assume a class of P Systems C’ accepting/generating a class
of languages £’.

We write £ = L' iff there exists an encoding from C to C/,
namely, given any N € C accepting/generating a language L,
we can map it to some N’ € C’ accepting/generating L. This
implies that (but, in general, is not equivalent to) £ C £’

We write £ < £ iffboth £L = £ and £' = L.
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PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)

Il Il Il
PsRE PsPg(coo, ndet, pro) PsPgy(coo, ndet, npro) PsPgy(ncoo, ndet, pro)

PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
I
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U U U U
Ly  =PsPg(coo, det, pro) = PsPgy(coo, det, npro) = PsPg4(ncoo, det, pro) = PsPq(ncoo, det, npro)

where:
Q@ Li={Ww|IANWNA£DAWNN=0}U{w|3IN.wnN=0}u {2}
@ L, = {{w} | wis amultiset} U {2}

@ [jis the least set containing {a" | 3k. n > k} closed w.r.t. complementation,
finite union and finite intersection.
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Let us give an hint of some of these results.
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PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPa(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly  =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)
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We map a generator N = (X UC, 0, w, R) € P(ncoo, ndet, pro)
into an equivalent acceptor Ny = (X5 UCaU{T}, 0, wa, Ra).
Idea: Rename all objects a of 1 as &, embed the N so modified
into My, generate a multiset and check if it coincides with the
input of M:

@ Given any input u, use I1to generate a multiset v'.

© When I has terminated, start the comparison between u
and v'.

© If u= V' then accept u. The nondeterminism ensures that
all multisets generated by I1 can be considered.

Observation: we have to check when 1 has terminated and we
have to start the comparison.
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@ Embed I into M, by renaming all ain M as &’:
w2 w and Ry D {d — Vg|ys.t. a— v|pisarulein R}

Ra2{g — A}
In this way, M, generates a multiset ' iff I generates u.

Now, if the input to N4 is u then I, should accept it, since
M, should accept exactly the multisets generated by I1.

Object g means that I is still working.

So, we have to check if the input and the multiset
generated by I are the same. Such a checking will be
enabled only when 1 terminates, i.e. when g disappears.
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Q@ {d - Vg|lys.t.a—v|pisarulein RIU{g — )
P p

@ Add multiset x1g to w, and rules:
X—=X|1g X =Xz x—=5s 1-2 21|

Until I is working, object g is generated by rules added at
ltem 1.

When 1 terminates, g is no more generated, and s is
produced.

Object s triggers the comparison between the input and
the object generated by 1.
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Q@ {&d - Vglpsta—pvisarulein R}
Q@ x—X|g X=Xz x—=8 g—XA 122 2— |
© Add objects 0 and T to w, and rules:

0—-1s 1—2 2—3 {3—=1pns|acxr,dcy’}

{a—aylackt} {a—Aflackt}
{d —dlflacx} {d—-Ajlacx}

(T = Mgl ABeCl  {T—Nyps|A,BeC}
(T=NglAeC} {T—),3/AcC}

(T = Tlas | AA€C)
(A= )Nz|AcC} (A= )Nz|AeC)
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PsPa(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly  =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)
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As in the case of P(ncoo, ndet, pro) we embed a generator into
an acceptor and we compare the input with a generated
multiset. ltems 1 and 2 are as in the previous case, the
comparison (i.e. ltem 3) is simpler due to cooperative rules:

Q {V—-Vglps tu—pvisarulein R}U{g — A}
Q@ x—Xlg X=Xz x—=s) 152 21|y

© Add object T to w, and cooperative rules:

{ad — Nsst ae ¥}
{aT — \sst. ae X}
{dT — Nsst acX}
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PsPx(coo, ndet, pro) PsP;(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly  =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)
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Also in this case we embed the generator N = (X UC, 0, w, R)
into an equivalent acceptor Ny = (X5 UCaU{T}, 0, wa, Ra).
@ W Cwytewsand T € wa.
@ t — rs € R,. Object s triggers the comparison.
@ The work by N is simulated by a loop with 3 steps:
Q@ R.O{U V'V tU - V'V'"'s. t.u— visarulein R}
Q R.D{a"T - stacr}ju{t -t'tu{ad —a"|ac
>
Q Ft’i o{a"a" —astacriu{t -t}
o If t — rsfires before the loop terminates, rule &"'rT — A
removes T and the computation is not accepting.
@ Otherwise, after the loop the comparison starts:
{sad —s|aeX}uU{sal - \|lacexr}u{sdT —\|ac
>}
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PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
KD Il KD
PsRE =*PsPgy(coo, ndet, pro) =* PsPgy(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPgy(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
Il l
PsSRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) D PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U @] @] @]
Ly  =PsPg(coo, det, pro) = PsPgy(coo, det, npro) = PsPg4(ncoo, det, pro) = PsPq(ncoo, det, npro)

where L1 ={w |[FIAN.wNAZDAWNN=0}U{w|3IN.wNnN=0}u{a}
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@ An acceptor in P(ncoo, det, npro) for {w | 3ALN.wnNA#OAwnNN = (0} has
no control object and rules {a — T |a€ A} and {b — b | b e N}.

@ An acceptor in P(ncoo, det, npro) for {w | IN. w N N = 0} contains initially an
occurrence of T and has rules {b — b | b € N}.

@ To see that PsPas(ncoo, ndet, npro) C L1, take any acceptor
N € P(ncoo, ndet, npro).
If it contains a rule of the form T — u, for any u, then Ps(M) = 0, and 0 € L.
Otherwise, let G be the graph having a node for each object in X U C and an
arch from ato b if there is a rule a — u with b € u.
Let N be the set of the objects a € ¥ such that all paths from a are infinite, i.e.
a—-.-—a —...— a forsomed.
Let A be the set of the objects a € ¥ such that at least one path from a is finite
andleadsto T,ie.a— --- — T.
If T is an initial object in N then a multiset is accepted iff it gives rise to a finite
computation, because no rule can remove T and the final configuration, if
reached, contains T for sure. Therefore, Ps(M) = {w | wN N = 0}.
If T is not initially in M, then a multiset is accepted iff it gives rise to a finite
computation that introduces T in one of its steps. Therefore,
Ps(M ={w|wnA#0AwnNN=0}.
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PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il KD
PsRE =*PsPgy(coo, ndet, pro) =* PsPg(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
[
L3 PsPa(ncoo, ndet, npro)
l
PsSRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) > PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
U @] @] @]
Ly  =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)
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We map a 3-register machine M to an equivalent acceptor My, in P(coo, det, npro).
Let Ry, Ro, R be the three registers of M, and 0 < i < m be the instructions.

The idea is to represent a configuration (i, A, B, C) with multiset (ia*b5cC).
Instruction i : R4+, j is simulated by rule i — aj.

Instruction i : Ry—, j, k is simulated by rules
i—xyi ax—x Yi—=y yixi—j yixi—k.

Instructions over R, and R are analogous, we simply replace any occurrence of a with
b or c, respectively.

Finally, we need these rules to check that configuration (0, 0, 0, 0) has been reached:

0—-T Ta— A b — X Tc— A.
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PsPx(coo, ndet, pro) PsPx(coo, ndet, npro) PsPx(ncoo, ndet, pro)
Il Il Il
PsRE =*PsPgy(coo, ndet, pro) =* PsPg(coo, ndet, npro) =* PsPgy(ncoo, ndet, pro)
U*
PsPg(ncoo, ndet, npro)
u
L4
l
L3 PsPa(ncoo, ndet, npro)
l
PsRE = PsPa(coo, det, pro) & PsPa(coo, det, npro) D PsPa(ncoo, det, pro) O PsPa(ncoo, det, npro)
@] @] @] @]
Ly  =PsPy(coo, det, pro) = PsPy(coo, det, npro) = PsPy(ncoo, det, pro) = PsPg4(ncoo, det, npro)
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Take any N = (X U C, 0, w, R) € P(coo, det, pro) with R = {ry,...,rg}.
Idea: rewrite any r; = u; — Vvi|p, as r/ = Uip; — Vipj-
This requires that u; N p; = 0: if not, rewrite first r; as u; — Vilp\ y;-

By moving promoters to left hand sides of rules we may introduce nondeterminism.
(For example, by trasforming rules a — d|c and b — e|¢ into ac — dc and bc — ec.)
So, rewrite r/ as iu;p; — v;p;, where 1 < i < k are new control objects that must be
introduced in sequence.

If v; N u; # 0 then performing r/ may trigger r] itself. So, rewrite r/ as iujp; — v/’pj.
We may run r/ more than once: rewrite it as i/’u/p; — v/'p/i"”’ and add rules:

R

i '////7, i N i7 I'/I'/NI N i+ 1}

{i — I',I'”,I —

So, we simulate an original computation step by first running ry, then r}, and so on.
We also require rules for:

@ Map all objects ato & before object 1 is introduced.

@ Map all & not consumed by rules and all & introduced by rules to a.
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