On the Expressiveness Power of Membrane Systems Working in Accepting Mode

Roberto Barbuti ¹, Andrea Maggiolo Schettini ¹, Paolo Milazzo ¹, Simone Tini ²

¹Università di Pisa, Pisa, Italy
²Università dell’Insubria, Como-Varese, Italy

Jena, August 25th, 2010
The expressiveness of several classes of P Systems viewed as generators of multisets is well known.

Our aim is to study the expressiveness of some classes of P Systems viewed as acceptors of multisets.
Definition

A membrane system Π is given by

$$\Pi = (V, \mu, w_1, \ldots, w_n, R_1, \ldots, R_n)$$

where:

- V is an alphabet whose elements are called objects;
- $\mu \subseteq \mathbb{N} \times \mathbb{N}$ is a membrane structure, such that $(l_1, l_2) \in \mu$ denotes that the membrane labeled by l_2 is contained in the membrane labeled by l_1;
- w_j with $1 \leq j \leq n$ are strings from V^* representing multisets over V associated with the membranes $1, \ldots, n$ of μ;
- R_j with $1 \leq j \leq n$ are finite sets of evolution rules associated with the membranes $1, \ldots, n$ of μ.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini
Expressiveness of Acceptor Membrane Systems
Assume V partitioned into Σ and the set of control objects C.

Theorem

Every P system with promoters can be mapped to an equivalent flat (i.e. with a single membrane) P system.

Here equivalent means that the two P Systems compute by having, step by step, the same multisets over Σ in the skin membrane.
Definition

A flat generator over Σ is a P system

$$\Pi = (\Sigma \cup C, \emptyset, w_1, R_1)$$

A multiset of objects w over Σ is generated by Π iff there exists a multiset w' over C and a final configuration that can be reached having $w \cup w'$ as multiset of objects.

Definition

A flat acceptor over Σ is a P system

$$\Pi = (\Sigma \cup C \cup \{T\}, \emptyset, w_1, R_1)$$

A multiset of objects w over Σ is accepted by Π iff by adding w to w_1 and by starting the computation, a final configuration can be reached with T appearing in the membrane.
8 classes of P Systems

\[P(\text{coo}/\text{ncoo}, \text{nondet}/\text{det}, \text{pro}/\text{npro}): \]
- \text{coo}: cooperative rules; \text{ncoo}: no cooperative rules.
- \text{nondet}: nondeterminism; \text{det}: determinism.
- \text{pro}: promoters, \text{npro}: no promoters.

16 classes of languages

\[P_sP_x(\text{coo}/\text{ncoo}, \text{nondet}/\text{det}, \text{pro}/\text{nproo}): \]
- \(P_s \) stays for "Parikh set"
- \(x \) is "g" for generators and "a" for acceptors.
Assume a class of P Systems C accepting/generating a class of languages \mathcal{L}.
Assume a class of P Systems C' accepting/generating a class of languages \mathcal{L}'.

We write $\mathcal{L} \Rightarrow \mathcal{L}'$ iff there exists an encoding from C to C', namely, given any $\Pi \in C$ accepting/generating a language L, we can map it to some $\Pi' \in C'$ accepting/generating L. This implies that (but, in general, is not equivalent to) $\mathcal{L} \subseteq \mathcal{L}'$

We write $\mathcal{L} \Leftrightarrow \mathcal{L}'$ iff both $\mathcal{L} \Rightarrow \mathcal{L}'$ and $\mathcal{L}' \Rightarrow \mathcal{L}$.
\[PsP_a(coo, ndet, pro) \parallel \uparrow \quad PsP_a(coo, ndet, npro) \quad PsP_a(ncoo, ndet, pro) \parallel \uparrow \]

\[PsRE =* PsP_g(coo, ndet, pro) =* PsP_g(coo, ndet, npro) =* PsP_g(ncoo, ndet, npro) \parallel \uparrow \]

\[PsRE = PsP_a(coo, det, pro) \iff PsP_a(coo, det, npro) \cup PsP_a(ncoo, det, pro) \cup PsP_a(ncoo, det, npro) \]

\[\mathcal{L}_2 = PsP_g(coo, det, pro) = PsP_g(coo, det, npro) = PsP_g(ncoo, det, pro) = PsP_g(ncoo, det, npro) \]

where:

- \(\mathcal{L}_1 = \{ w \mid \exists A, N. w \cap A \neq \emptyset \land w \cap N = \emptyset \} \cup \{ w \mid \exists N. w \cap N = \emptyset \} \cup \{ \emptyset \} \)
- \(\mathcal{L}_2 = \{ \{ w \} \mid w \text{ is a multiset} \} \cup \{ \emptyset \} \)
- \(\mathcal{L}_3 \) is the least set containing \(\{ a^n \mid \exists k. n \geq k \} \) closed w.r.t. complementation, finite union and finite intersection.
Let us give an hint of some of these results.
\[\begin{align*}
PsP_a(\text{coo}, \text{ndet}, \text{pro}) & \parallel \uparrow \quad PsP_a(\text{coo}, \text{ndet}, \text{npro}) \\
PsRE & = \ast PsP_g(\text{coo}, \text{ndet}, \text{pro}) = \ast PsP_g(\text{coo}, \text{ndet}, \text{npro}) = \ast PsP_g(\text{ncoo}, \text{ndet}, \text{pro}) \\
\end{align*} \]
We map a generator $\Pi = (\Sigma \cup C, \emptyset, w, R) \in P(ncoo, ndet, pro)$ into an equivalent acceptor $\Pi_a = (\Sigma_a \cup C_a \cup \{T\}, \emptyset, w_a, R_a)$. Idea: Rename all objects a of Π as a', embed the Π so modified into Π_a, generate a multiset and check if it coincides with the input of Π_a:

1. Given any input u, use Π to generate a multiset v'.
2. When Π has terminated, start the comparison between u and v'.
3. If $u = v'$ then accept u. The nondeterminism ensures that all multisets generated by Π can be considered.

Observation: we have to check when Π has terminated and we have to start the comparison.
Embed Π into Π_a by renaming all a in Π as a':

$$w_a \supseteq w' \text{ and } R_a \supseteq \{a' \rightarrow v'g | \rho' \text{ s. t. } a \rightarrow v|\rho \text{ is a rule in } R\}$$

$$R_a \supseteq \{g \rightarrow \lambda\}$$

In this way, Π_a generates a multiset u' iff Π generates u.

Now, if the input to Π_a is u then Π_a should accept it, since Π_a should accept exactly the multisets generated by Π.

Object g means that Π is still working.

So, we have to check if the input and the multiset generated by Π are the same. Such a checking will be enabled only when Π terminates, i.e. when g disappears.
1 \{a' \rightarrow v'g_{p'}, \text{s. t. } a \rightarrow v_{p} \text{ is a rule in } R\} \cup \{g \rightarrow \lambda\}

2 \text{Add multiset } x1g \text{ to } \omega_{a} \text{ and rules: }

\begin{align*}
 x & \rightarrow x'_{1}g \\
 x' & \rightarrow x_{2} \\
 x & \rightarrow s_{2} \\
 1 & \rightarrow 2 \\
 2 & \rightarrow 1_{x'}
\end{align*}

Until \(\Pi \) is working, object \(g \) is generated by rules added at Item 1.

When \(\Pi \) terminates, \(g \) is no more generated, and \(s \) is produced.

Object \(s \) triggers the comparison between the input and the object generated by \(\Pi \).
Add objects $\bar{0}$ and T to w_a and rules:

1. \[\{ a \to a_{\bar{1}} \mid a \in \Sigma \} \]
2. \[\{ a \to A_{\bar{1}} \mid a \in \Sigma \} \]
3. \[\{ a' \to a'_{\bar{1}} \mid a \in \Sigma \} \]
4. \[\{ a' \to A'_{\bar{1}} \mid a \in \Sigma \} \]
5. \[\{ T \to \lambda_{AB_{\bar{2}}} \mid A, B \in \hat{C} \} \]
6. \[\{ T \to \lambda_{A'B'_{\bar{2}}} \mid A', B' \in \hat{C} \} \]
7. \[\{ T \to \lambda_{A_{\bar{3}}} \mid A \in \hat{C} \} \]
8. \[\{ T \to \lambda_{A'_{\bar{3}}} \mid A' \in \hat{C} \} \]
9. \[\{ T \to T_{AA'_{\bar{3}}} \mid A, A' \in \hat{C} \} \]
10. \[\{ A \to \lambda_{\bar{3}} \mid A \in \hat{C} \} \]
11. \[\{ A' \to \lambda_{\bar{3}} \mid A' \in \hat{C} \} \]
\[
\begin{align*}
\text{PsP}_a(c\text{oo}, \text{ndet}, \text{pro}) & \parallel \uparrow \text{PsP}_a(c\text{oo}, \text{ndet}, \text{npro}) \\
\text{PsRE} = \ast \text{PsP}_g(c\text{oo}, \text{ndet}, \text{pro}) & = \ast \text{PsP}_g(c\text{oo}, \text{ndet}, \text{npro}) = \ast \text{PsP}_a(n\text{coo}, \text{ndet}, \text{pro}) \parallel \uparrow \text{PsP}_a(n\text{coo}, \text{ndet}, \text{npro}) \\
\text{PsRE} = \text{PsP}_a(c\text{oo}, \text{det}, \text{pro}) \Leftrightarrow \text{PsP}_a(c\text{oo}, \text{det}, \text{npro}) \cup \text{PsP}_a(n\text{coo}, \text{det}, \text{pro}) \cup \text{PsP}_a(n\text{coo}, \text{det}, \text{npro}) \\
\text{PsRE} = \text{PsP}_g(c\text{oo}, \text{det}, \text{pro}) = \text{PsP}_g(c\text{oo}, \text{det}, \text{npro}) = \text{PsP}_g(n\text{coo}, \text{det}, \text{pro}) = \text{PsP}_g(n\text{coo}, \text{det}, \text{npro}) \\
\text{L}_2 = \text{PsP}_g(c\text{oo}, \text{det}, \text{pro}) = \text{PsP}_g(c\text{oo}, \text{det}, \text{npro}) = \text{PsP}_g(n\text{coo}, \text{det}, \text{pro}) = \text{PsP}_g(n\text{coo}, \text{det}, \text{npro}) \\
\text{L}_3 \cup \text{PsP}_a(c\text{oo}, \text{det}, \text{pro}) \parallel \text{PsP}_a(c\text{oo}, \text{det}, \text{npro}) \cup \text{PsP}_a(n\text{coo}, \text{det}, \text{pro}) \cup \text{PsP}_a(n\text{coo}, \text{det}, \text{npro}) \cup \text{PsP}_g(c\text{oo}, \text{det}, \text{pro}) \cup \text{PsP}_g(c\text{oo}, \text{det}, \text{npro}) \cup \text{PsP}_g(n\text{coo}, \text{det}, \text{pro}) \cup \text{PsP}_g(n\text{coo}, \text{det}, \text{npro})
\end{align*}
\]
As in the case of $P(ncoo, ndet, pro)$ we embed a generator into an acceptor and we compare the input with a generated multiset. Items 1 and 2 are as in the previous case, the comparison (i.e. Item 3) is simpler due to cooperative rules:

1. \[
\left\{ u' \rightarrow v' g | p' \right\} \text{ s.t. } u \rightarrow_p v \text{ is a rule in } R \right\} \cup \{ g \rightarrow \lambda \}
\]

2. \[
x \rightarrow x' |_1 g \quad x' \rightarrow x |_2 \quad x \rightarrow s |_2 \quad 1 \rightarrow 2 \quad 2 \rightarrow 1 |_{x'}
\]

3. Add object T to w_a and cooperative rules:

\[
\left\{ a a' \rightarrow \lambda |_s \text{ s.t. } a \in \Sigma \right\}
\]
\[
\left\{ aT \rightarrow \lambda |_s \text{ s.t. } a \in \Sigma \right\}
\]
\[
\left\{ a' T \rightarrow \lambda |_s \text{ s.t. } a \in \Sigma \right\}
\]
\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
\]} \quad \]

\[
P_{S^P_a}(\text{coo, ndet, pro}) \parallel \uparrow \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, pro}) \quad \equiv \quad \text{PsRE} =^* P_{S^P_g}(\text{coo, ndet, npro}) \\
Also in this case we embed the generator \(\Pi = (\Sigma \cup C, \emptyset, w, R) \) into an equivalent acceptor \(\Pi_a = (\Sigma_a \cup C_a \cup \{T\}, \emptyset, w_a, R_a) \).

- \(w' \subseteq w_a, \ t \in w_a \) and \(T \in w_a \).
- \(t \rightarrow rs \in R_a \). Object \(s \) triggers the comparison.
- The work by \(\Pi \) is simulated by a loop with 3 steps:
 1. \(R_a \supseteq \{u' \rightarrow v''v''', tu' \rightarrow v''v'''t' \text{ s.t. } u \rightarrow v \text{ is a rule in } R\} \)
 2. \(R_a \supseteq \{a''''rT \rightarrow \lambda \text{ s.t. } a \in \Sigma\} \cup \{t' \rightarrow t''\} \cup \{a'' \rightarrow a''' \mid a \in \Sigma\} \)
 3. \(R_a \supseteq \{a''''a''''' \rightarrow a' \text{ s.t. } a \in \Sigma\} \cup \{t'' \rightarrow t\} \)
- If \(t \rightarrow rs \) fires before the loop terminates, rule \(a''''rT \rightarrow \lambda \) removes \(T \) and the computation is not accepting.
- Otherwise, after the loop the comparison starts:
 \(\{sa \rightarrow s \mid a \in \Sigma\} \cup \{saT \rightarrow \lambda \mid a \in \Sigma\} \cup \{sa'T \rightarrow \lambda \mid a \in \Sigma\} \)
\[PsP_a(\text{coo}, \text{ndet}, \text{pro}) \quad \parallel \uparrow \quad PsP_a(\text{coo}, \text{ndet}, \text{npro}) \quad =^* \quad PsP_a(\text{ncoo}, \text{ndet}, \text{pro}) \]

\[PsRE =^* PsP_g(\text{coo}, \text{ndet}, \text{pro}) =^* PsP_g(\text{coo}, \text{ndet}, \text{npro}) =^* PsP_g(\text{ncoo}, \text{ndet}, \text{npro}) \quad =^* \quad PsP_g(\text{ncoo}, \text{ndet}, \text{pro}) \]

\[PsRE = PsP_a(\text{coo}, \text{det}, \text{pro}) \equiv PsP_a(\text{coo}, \text{det}, \text{npro}) \supset PsP_a(\text{ncoo}, \text{det}, \text{pro}) \supset PsP_a(\text{ncoo}, \text{det}, \text{npro}) \]

\[L_1 = \{ w \mid \exists A, N. w \cap A \neq \emptyset \land w \cap N = \emptyset \} \cup \{ w \mid \exists N. w \cap N = \emptyset \} \cup \{ \emptyset \} \]

where \(\mathcal{L}_1 \) is defined as above.
An acceptor in $P(ncoo, det, npro)$ for $\{w \mid \exists A, N. w \cap A \neq \emptyset \land w \cap N = \emptyset\}$ has no control object and rules $\{a \to T \mid a \in A\}$ and $\{b \to b \mid b \in N\}$.

An acceptor in $P(ncoo, det, npro)$ for $\{w \mid \exists N. w \cap N = \emptyset\}$ contains initially an occurrence of T and has rules $\{b \to b \mid b \in N\}$.

To see that $PsP_a(ncoo, ndet, npro) \subseteq L_1$, take any acceptor $\Pi \in P(ncoo, ndet, npro)$. If it contains a rule of the form $T \to u$, for any u, then $Ps(\Pi) = \emptyset$, and $\emptyset \in L_1$. Otherwise, let G be the graph having a node for each object in $\Sigma \cup C$ and an arch from a to b if there is a rule $a \to u$ with $b \in u$.

Let N be the set of the objects $a \in \Sigma$ such that all paths from a are infinite, i.e. $a \to \cdots \to a' \to \cdots \to a'$ for some a'.

Let A be the set of the objects $a \in \Sigma$ such that at least one path from a is finite and leads to T, i.e. $a \to \cdots \to T$.

If T is an initial object in Π then a multiset is accepted iff it gives rise to a finite computation, because no rule can remove T and the final configuration, if reached, contains T for sure. Therefore, $Ps(\Pi) = \{w \mid w \cap N = \emptyset\}$.

If T is not initially in Π, then a multiset is accepted iff it gives rise to a finite computation that introduces T in one of its steps. Therefore, $Ps(\Pi) = \{w \mid w \cap A \neq \emptyset \land w \cap N = \emptyset\}$.

R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini
Expressiveness of Acceptor Membrane Systems
\[PsP_a(\text{coo, ndet, pro}) \parallel \uparrow \]
\[PsRE \equiv^* PsP_g(\text{coo, ndet, pro}) =^* PsP_g(\text{coo, ndet, npro}) =^* PsP_g(\text{ncoo, ndet, npro}) \]

\[\bigcup \]
\[L_1 \]
\[\bigcup \]
\[L_3 \]

\[PsRE \equiv PsP_a(\text{coo, det, pro}) \leftrightarrow PsP_a(\text{coo, det, npro}) \supset PsP_a(\text{ncoo, det, pro}) \supset PsP_a(\text{ncoo, det, npro}) \]

\[\bigcup \]
\[L_2 \]
\[= PsP_g(\text{coo, det, pro}) = PsP_g(\text{coo, det, npro}) = PsP_g(\text{ncoo, det, pro}) = PsP_g(\text{ncoo, det, npro}) \]
We map a 3-register machine M to an equivalent acceptor Π_M in $P(\text{coo, det, npro})$. Let R_1, R_2, R_3 be the three registers of M, and $0 \leq i \leq m$ be the instructions. The idea is to represent a configuration (i, A, B, C) with multiset $(ia^A b^B c^C)$.

Instruction $i : R_1 +, j$ is simulated by rule $i \rightarrow aj$.

Instruction $i : R_1 -, j, k$ is simulated by rules

$$i \rightarrow x_i y_i \quad ax_i \rightarrow x'_i \quad y_i \rightarrow y'_i \quad y'_i x'_i \rightarrow j \quad y'_i x_i \rightarrow k.$$

Instructions over R_2 and R_3 are analogous, we simply replace any occurrence of a with b or c, respectively.

Finally, we need these rules to check that configuration $(0, 0, 0, 0)$ has been reached:

$$0 \rightarrow T \quad Ta \rightarrow \lambda \quad Tb \rightarrow \lambda \quad Tc \rightarrow \lambda.$$
\[PsP_a(\text{coo, ndet, pro}) \uparrow \parallel \uparrow PsP_g(\text{coo, ndet, pro}) \]

\[PsRE \; \; \; =^* \; \; \; PsP_g(\text{coo, ndet, pro}) \]

\[PsP_a(\text{coo, ndet, npro}) \parallel \uparrow \]

\[PsP_g(\text{coo, ndet, npro}) \]

\[PsP_a(\text{ncoo, ndet, pro}) \parallel \uparrow \]

\[PsP_g(\text{ncoo, ndet, npro}) \]

\[\cup^* \]

\[L_1 \]

\[\cup \]

\[L_3 \]

\[PsRE \; \; \; = PsP_a(\text{coo, det, pro}) \rightleftharpoons PsP_a(\text{coo, det, npro}) \cup PsP_a(\text{ncoo, det, pro}) \cup PsP_a(\text{ncoo, det, npro}) \]

\[L_2 \; \; \; = PsP_g(\text{coo, det, pro}) = PsP_g(\text{coo, det, npro}) = PsP_g(\text{ncoo, det, pro}) = PsP_g(\text{ncoo, det, npro}) \]
Take any \(\Pi = (\Sigma \cup C, \emptyset, w, R) \in P(\text{coo, det, pro}) \) with \(R = \{r_1, \ldots, r_k\} \).

Idea: rewrite any \(r_i \equiv u_i \rightarrow v_i|p_i \) as \(r'_i \equiv u_ip_i \rightarrow v_ip_i \).

This requires that \(u_i \cap p_i = \emptyset \): if not, rewrite first \(r_i \) as \(u_i \rightarrow v_i|p_i \setminus u_i \).

By moving promoters to left hand sides of rules we may introduce nondeterminism. (For example, by transforming rules \(a \rightarrow d|c \) and \(b \rightarrow e|c \) into \(ac \rightarrow dc \) and \(bc \rightarrow ec \).

So, rewrite \(r'_i \) as \(iu_ip_i \rightarrow v_ip_i \), where \(1 \leq i \leq k \) are new control objects that must be introduced in sequence.

If \(v_i \cap u_i \neq \emptyset \) then performing \(r'_i \) may trigger \(r'_i \) itself. So, rewrite \(r'_i \) as \(iu'_ip_i \rightarrow v'_ip'_i \).

We may run \(r'_i \) more than once: rewrite it as \(i'i''p'_i \rightarrow v''p''i''' \) and add rules:

\[
\{ i \rightarrow i'i'', i'' \rightarrow i''', i''''i''' \rightarrow i, i'i''' \rightarrow i + 1 \}
\]

So, we simulate an original computation step by first running \(r'_1 \), then \(r'_2 \), and so on.

We also require rules for:

- Map all objects \(a \rightarrow a' \) before object 1 is introduced.
- Map all \(a' \) not consumed by rules and all \(a'' \) introduced by rules to \(a \).