On the Expressiveness Power of Membrane Systems Working in Accepting Mode

Roberto Barbuti ¹, Andrea Maggiolo Schettini ¹, Paolo Milazzo ¹, Simone Tini ²

¹Università di Pisa, Pisa, Italy ²Università dell'Insubria, Como-Varese, Italy

Jena, August 25th, 2010

The expressiveness of several classes of P Systems viewed as generators of multisets is well known.

Our aim is to study the expressiveness of some classes of P Systems viewed as acceptors of multisets.

Definition

A *membrane system* Π is given by

$$\Pi = (V, \mu, w_1, \ldots, w_n, R_1, \ldots, R_n)$$

where:

- V is an alphabet whose elements are called objects;
- $\mu \subset N \times N$ is a *membrane structure*, such that $(I_1, I_2) \in \mu$ denotes that the membrane labeled by I_2 is contained in the membrane labeled by I_1 ;
- w_j with $1 \le j \le n$ are strings from V^* representing multisets over V associated with the membranes $1, \ldots, n$ of μ ;
- R_j with $1 \le j \le n$ are finite sets of *evolution rules* associated with the membranes $1, \ldots, n$ of μ .

Assume *V* partitioned into Σ and the set of *control objects* C.

Theorem

Every P system with promoters can be mapped to an equivalent flat (i.e. with a single membrane) P system.

- Z. Qi, J. You, H. Mao, WMC 2003.
- L. Bianco, V. Manca, WMC 2005.
- R. Barbuti, A. Maggiolo Schettini, P. Milazzo, S. Tini, Fundamenta Informaticae 87, 2008.

Here equivalent means that the two P Systems compute by having, step by step, the same multisets over Σ in the skin membrane.

Definition

A flat generator over Σ is a P system

$$\Pi = (\Sigma \cup \mathcal{C}, \emptyset, w_1, R_1)$$

A multiset of objects w over Σ is generated by Π iff there exists a multiset w' over \mathcal{C} and a final configuration that can be reached having $w \cup w'$ as multiset of objects.

Definition

A flat acceptor over Σ is a P system

$$\Pi = (\Sigma \cup \mathcal{C} \cup \{T\}, \emptyset, w_1, R_1)$$

A multiset of objects w over Σ is accepted by Π iff by adding w to w_1 and by starting the computation, a final configuration can be reached with T appearing in the membrane.

8 classes of P Systems

P(*coo*/*ncoo*, *ndet*/*det*, *pro*/*npro*):

- coo: cooperative rules; ncoo: no cooperative rules.
- ndet: nondeterminism; det: determinism.
- pro: promoters, npro: no promoters.

16 classes of languages

$P_sP_x(coo/ncoo, ndet/det, pro/nproo)$:

- P_s stays for "Parikh set"
- x is "g" for generators and "a" for acceptors.

Assume a class of P Systems C accepting/generating a class of languages \mathcal{L} .

Assume a class of P Systems C' accepting/generating a class of languages \mathcal{L}' .

We write $\mathcal{L}\Rightarrow\mathcal{L}'$ iff there exists an encoding from C to C', namely, given any $\Pi\in C$ accepting/generating a language L, we can map it to some $\Pi'\in C'$ accepting/generating L. This implies that (but, in general, is not equivalent to) $\mathcal{L}\subseteq\mathcal{L}'$

We write $\mathcal{L} \Leftrightarrow \mathcal{L}'$ iff both $\mathcal{L} \Rightarrow \mathcal{L}'$ and $\mathcal{L}' \Rightarrow \mathcal{L}$.

$$PsP_a(coo, ndet, pro) \qquad PsP_a(coo, ndet, npro) \qquad PsP_a(ncoo, ndet, pro) \qquad \| \uparrow \qquad PsP_g(ncoo, ndet, pro) \qquad =* \qquad PsP_g(ncoo, ndet, pro) \qquad =* \qquad PsP_g(ncoo, ndet, npro) \qquad =* \qquad PsP_g(ncoo, nd$$

$$|| \qquad || \\ PSRE = PsP_a(coo, det, pro) \stackrel{\triangle}{=} PsP_a(coo, det, npro) \supset PsP_a(ncoo, det, pro) \supset PsP_a(ncoo, det, npro)$$

$$\cup \qquad \qquad \cup \\ \mathcal{L}_2 \qquad = PsP_g(coo, det, pro) = PsP_g(coo, det, npro) = PsP_g(ncoo, det, pro) = PsP_g(ncoo, det, npro)$$

where:

- $\mathcal{L}_1 = \{ w \mid \exists A, N. \ w \cap A \neq \emptyset \land w \cap N = \emptyset \} \cup \{ w \mid \exists N. \ w \cap N = \emptyset \} \cup \{ \emptyset \}$
- $\mathcal{L}_2 = \{\{w\} \mid w \text{ is a multiset}\} \cup \{\emptyset\}$
- \mathcal{L}_3 is the least set containing $\{a^n \mid \exists k. \ n \geq k\}$ closed w.r.t. complementation, finite union and finite intersection.

 $PsP_a(ncoo, ndet, npro)$

Let us give an hint of some of these results.

$$PSRE = *PSP_g(coo, ndet, pro) = *PSP_g(coo, ndet, npro) = *PSP_g(ncoo, ndet, pro) = *PSP_g(ncoo, ndet, pro) = *PSP_g(ncoo, ndet, pro) = *PSP_g(ncoo, ndet, npro) = *PSP_g(ncoo, ndet,$$

 $PsP_a(coo, ndet, npro)$

 $PsP_a(ncoo, ndet, pro)$

 $PsP_a(coo, ndet, pro)$

We map a generator $\Pi = (\Sigma \cup \mathcal{C}, \emptyset, w, R) \in P(ncoo, ndet, pro)$ into an equivalent acceptor $\Pi_a = (\Sigma_a \cup \mathcal{C}_a \cup \{T\}, \emptyset, w_a, R_a)$. Idea: Rename all objects a of Π as a', embed the Π so modified into Π_a , generate a multiset and check if it coincides with the input of Π_a :

- **①** Given any input u, use Π to generate a multiset v'.
- **②** When Π has terminated, start the comparison between u and v'.
- ③ If u = v' then accept u. The nondeterminism ensures that all multisets generated by Π can be considered.

Observation: we have to check when Π has terminated and we have to start the comparison.

① Embed Π into Π_a by renaming all a in Π as a':

$$w_a \supseteq w'$$
 and $R_a \supseteq \{a' \to v'g|_{p'} \text{ s. t. } a \to v|_p \text{ is a rule in } R\}$

$$R_a \supseteq \{g \rightarrow \lambda\}$$

In this way, Π_a generates a multiset u' iff Π generates u.

Now, if the input to Π_a is u then Π_a should accept it, since Π_a should accept exactly the multisets generated by Π .

Object g means that Π is still working.

So, we have to check if the input and the multiset generated by Π are the same. Such a checking will be enabled only when Π terminates, i.e. when g disappears.

- Add multiset x1g to wa and rules:

$$x \rightarrow x'|_{1 \hbox{\scriptsize \it g}} \quad x' \rightarrow x|_2 \quad x \rightarrow \hbox{\scriptsize \it s}|_2 \quad 1 \rightarrow 2 \quad 2 \rightarrow 1|_{x'}$$

Until Π is working, object g is generated by rules added at Item 1.

When Π terminates, g is no more generated, and s is produced.

Object s triggers the comparison between the input and the object generated by Π .

- ② $X \to X'|_{1g}$ $X' \to X|_2$ $X \to S|_2$ $g \to \lambda$ $1 \to 2$ $2 \to |_{X'}$
- **3** Add objects $\overline{0}$ and T to w_a and rules:

$$\begin{array}{ll} \overline{\mathbf{0}} \rightarrow \overline{\mathbf{1}}|_{\mathbf{S}} & \overline{\mathbf{1}} \rightarrow \overline{\mathbf{2}} & \overline{\mathbf{2}} \rightarrow \overline{\mathbf{3}} & \{\overline{\mathbf{3}} \rightarrow \overline{\mathbf{1}}|_{\mathit{Taa'}} \mid a \in \Sigma, a' \in \Sigma'\} \\ & \{a \rightarrow a|_{\overline{\mathbf{1}}} \mid a \in \Sigma\} & \{a \rightarrow A|_{\overline{\mathbf{1}}} \mid a \in \Sigma\} \\ & \{a' \rightarrow a'|_{\overline{\mathbf{1}}} \mid a \in \Sigma\} & \{a' \rightarrow A'|_{\overline{\mathbf{1}}} \mid a \in \Sigma\} \end{array}$$

$$\left\{ \begin{array}{ll} T \rightarrow \lambda|_{AB\overline{\mathbf{2}}} \mid A, B \in \hat{\mathbf{C}} \right\} & \{T \rightarrow \lambda|_{A'\overline{\mathbf{3}}} \mid A', B' \in \hat{\mathbf{C}} \} \\ & \{T \rightarrow \lambda|_{A\overline{\mathbf{3}}} \mid A \in \hat{\mathbf{C}} \} & \{T \rightarrow \lambda|_{A'\overline{\mathbf{3}}} \mid A' \in \hat{\mathbf{C}} \} \\ & \{T \rightarrow T|_{AA'\overline{\mathbf{3}}} \mid A, A' \in \hat{\mathbf{C}} \} \\ & \{A \rightarrow \lambda|_{\overline{\mathbf{3}}} \mid A \in \hat{\mathbf{C}} \} & \{A' \rightarrow \lambda|_{\overline{\mathbf{3}}} \mid A' \in \hat{\mathbf{C}} \} \end{array}$$

$$PsRE = {}^*PsP_g(coo, ndet, pro) = {}^*PsP_g(coo, ndet, npro) = {}^*PsP_g(ncoo, ndet, pro) \\ \cup {}^*PsP_g(ncoo, ndet, npro) \\$$

 $PsP_a(coo, ndet, npro)$

 $PsP_a(ncoo, ndet, pro)$

 $PsP_a(coo, ndet, pro)$

As in the case of P(ncoo, ndet, pro) we embed a generator into an acceptor and we compare the input with a generated multiset. Items 1 and 2 are as in the previous case, the comparison (i.e. Item 3) is simpler due to cooperative rules:

$$2 \quad X \rightarrow X'|_{1g} \quad X' \rightarrow X|_2 \quad X \rightarrow S|_2 \quad 1 \rightarrow 2 \quad 2 \rightarrow 1|_{X'}$$

3 Add object T to w_a and cooperative rules:

$$\{aa' \to \lambda|_{s} \text{ s.t. } a \in \Sigma\}$$

 $\{aT \to \lambda|_{s} \text{ s.t. } a \in \Sigma\}$
 $\{a'T \to \lambda|_{s} \text{ s.t. } a \in \Sigma\}$

$$PsRE = *PsP_g(coo, ndet, pro) = *PsP_g(coo, ndet, npro) = *PsP_g(ncoo, ndet, pro) = *PsP_g(ncoo, ndet, pro) = *PsP_g(ncoo, ndet, pro) = *PsP_g(ncoo, ndet, npro) = *PsP_g(ncoo, ndet,$$

 $PsP_a(coo, ndet, npro)$

 $PsP_a(ncoo, ndet, pro)$

 $PsP_a(coo, ndet, pro)$

Also in this case we embed the generator $\Pi = (\Sigma \cup C, \emptyset, w, R)$ into an equivalent acceptor $\Pi_a = (\Sigma_a \cup C_a \cup \{T\}, \emptyset, w_a, R_a)$.

- $w' \subseteq w_a$, $t \in w_a$ and $T \in w_a$.
- $t \rightarrow rs \in R_a$. Object s triggers the comparison.
- The work by Π is simulated by a loop with 3 steps:
- If t → rs fires before the loop terminates, rule a"rT → λ removes T and the computation is not accepting.
- Otherwise, after the loop the comparison starts: $\{saa' \to s \mid a \in \Sigma\} \cup \{saT \to \lambda \mid a \in \Sigma\} \cup \{sa'T \to \lambda \mid a \in \Sigma\}$

- An acceptor in P(ncoo, det, npro) for $\{w \mid \exists A, N. \ w \cap A \neq \emptyset \land w \cap N = \emptyset\}$ has no control object and rules $\{a \to T \mid a \in A\}$ and $\{b \to b \mid b \in N\}$.
- An acceptor in P(ncoo, det, npro) for {w | ∃N. w ∩ N = ∅} contains initially an occurrence of T and has rules {b → b | b ∈ N}.
- To see that $PsP_a(ncoo, ndet, npro) \subseteq \mathcal{L}_1$, take any acceptor $\Pi \in P(ncoo, ndet, npro)$.

If it contains a rule of the form $T \to u$, for any u, then $Ps(\Pi) = \emptyset$, and $\emptyset \in \mathcal{L}_1$. Otherwise, let G be the graph having a node for each object in $\Sigma \cup C$ and an arch from a to b if there is a rule $a \to u$ with $b \in u$.

Let *N* be the set of the objects $a \in \Sigma$ such that all paths from *a* are infinite, i.e. $a \to \cdots \to a' \to \cdots \to a'$ for some a'.

Let *A* be the set of the objects $a \in \Sigma$ such that at least one path from *a* is finite and leads to *T*, i.e. $a \to \cdots \to T$.

If T is an initial object in Π then a multiset is accepted iff it gives rise to a finite computation, because no rule can remove T and the final configuration, if reached, contains T for sure. Therefore, $Ps(\Pi) = \{w \mid w \cap N = \emptyset\}$.

If T is not initially in Π , then a multiset is accepted iff it gives rise to a finite computation that introduces T in one of its steps. Therefore,

$$Ps(\Pi) = \{ w \mid w \cap A \neq \emptyset \land w \cap N = \emptyset \}.$$

$$PsP_a(coo, ndet, pro) \\ \parallel \uparrow \\ PsRE = *PsP_g(coo, ndet, pro) \\ = * PsP_g(coo, ndet, npro) \\ = * PsP_g(coo, ndet, npro) \\ = * PsP_g(ncoo, ndet, pro) \\ = * PsP_g(ncoo, ndet, pro) \\ = * PsP_g(ncoo, ndet, pro) \\ \cup \\ \mathcal{L}_1 \\ \parallel \\ \mathcal{L}_3 \\ PsP_a(ncoo, ndet, npro) \\ \parallel \\ PsRE = PsP_a(coo, det, pro) \overset{\triangle}{\cong} PsP_a(coo, det, npro) \\ \supseteq PsP_a(ncoo, det, pro) \overset{\triangle}{\cong} PsP_a(ncoo, det, npro) \\ \cup \\ \mathcal{L}_2 \\ = PsP_a(coo, det, pro) = PsP_a(coo, det, npro) \\ = PsP_a(ncoo, det, pro) = PsP_a(ncoo, det, npro) \\ = PsP_a(ncoo$$

We map a 3-register machine M to an equivalent acceptor Π_M in P(coo, det, npro).

Let R_1, R_2, R_3 be the three registers of M, and $0 \le i \le m$ be the instructions.

The idea is to represent a configuration (i, A, B, C) with multiset $(ia^Ab^Bc^C)$.

Instruction $i: R_1+, j$ is simulated by rule $i \rightarrow aj$.

Instruction $i: R_1 -, j, k$ is simulated by rules

$$i \rightarrow x_i y_i \quad ax_i \rightarrow x_i' \quad y_i \rightarrow y_i' \quad y_i' x_i' \rightarrow j \quad y_i' x_i \rightarrow k$$
.

Instructions over R_2 and R_3 are analogous, we simply replace any occurrence of a with b or c, respectively.

Finally, we need these rules to check that configuration (0,0,0,0) has been reached:

$$0 \to T$$
 $Ta \to \lambda$ $Tb \to \lambda$ $Tc \to \lambda$.

$$PsP_a(coo, ndet, pro) \\ \parallel \uparrow \\ PsRE = *PsP_g(coo, ndet, pro) \\ = * PsP_g(coo, ndet, npro) \\ = * PsP_g(coo, ndet, npro) \\ = * PsP_g(ncoo, ndet, pro) \\ = * PsP_g(ncoo, ndet, pro) \\ = * PsP_g(ncoo, ndet, pro) \\ \cup \\ \mathcal{L}_1 \\ \parallel \\ PsRE = PsP_a(coo, det, pro) \\ \subseteq PsP_a(coo, det, npro) \\ \supseteq PsP_a(coo, det, npro) \\ \supseteq PsP_a(ncoo, det, npro) \\ \supseteq PsP_a(nc$$

Take any $\Pi = (\Sigma \cup C, \emptyset, w, R) \in P(coo, det, pro)$ with $R = \{r_1, \dots, r_k\}$.

Idea: rewrite any $r_i \equiv u_i \rightarrow v_i|_{p_i}$ as $r_i' \equiv u_i p_i \rightarrow v_i p_i$.

This requires that $u_i \cap p_i = \emptyset$: if not, rewrite first r_i as $u_i \to v_i|_{p_i \setminus u_i}$.

By moving promoters to left hand sides of rules we may introduce nondeterminism. (For example, by trasforming rules $a \to d|_{\mathcal{C}}$ and $b \to e|_{\mathcal{C}}$ into $ac \to dc$ and $bc \to ec$.) So, rewrite r'_i as $iu_ip_i \to v_ip_i$, where $1 \le i \le k$ are new control objects that must be introduced in sequence.

If $v_i \cap u_i \neq \emptyset$ then performing r_i' may trigger r_i' itself. So, rewrite r_i' as $iu_i'p_i' \rightarrow v_i''p_i'$. We may run r_i' more than once: rewrite it as $i'u_i'p_i' \rightarrow v_i''p_i'i'''$ and add rules:

$$\{i \to i'i'', i'' \to i'''', i'''i''' \to i, i'i'''' \to i+1\}$$

So, we simulate an original computation step by first running r_1^\prime , then r_2^\prime , and so on.

We also require rules for:

- Map all objects a to a' before object 1 is introduced.
- Map all a' not consumed by rules and all a'' introduced by rules to a.