
String-object transduction with Dogmatic P

Systems⋆

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

jsempere@dsic.upv.es

Abstract. In this work we approach the translations of strings to strings
in the framework of P systems. We use a variant of P systems based on
the Central Dogma of Molecular Biology which establishes the transfor-
mation of DNA strands into protein products by applying different string
transformation such as transductions and transcriptions.

Keywords: string-objects, membrane systems, transducers

1 Introduction

P systems [3] were introduced as a computational framework inspired by the
information and biochemical product processing of living cells through the use of
membrane communication. In most of the works about P systems, information
is represented as multisets of symbols/objects which can interact and evolve
according to predefined rules. Nevertheless, the use of strings to represent the
information and the use of rules to transform strings instead of multisets of
objects have always been present in the literature of this scientific area. So, in
his mostly referred book [3], Gh. Păun overviews the use of string rules in P
systems.

Recently [4], it has been proposed a variant of P systems with string-objects
and a new kind of rules based on the central dogma of molecular biology which
sets the framework to obtain protein products from DNA strands by applying,
among others, transduction and transcription operations. It has been proved
that the new model, so called Dogmatic P Systems, is able of simulating iterated
translations, so it is able of generating any recursively enumerable language [4].

2 Basic concepts

We will introduce basic concepts on transducers according to [1].
A transducer is defined by the tuple T = (Q, Σ, Γ, q0, E, F ) where Q is a

finite set of states, Σ is an input alphabet, Γ is an output alphabet, q0 ∈ Q is an

⋆ Work supported by the Spanish Ministerio de Educación y Ciencia under project
TIN2007-60769



initial state, F ⊆ Q is the set of final states and E is a finite set of transitions
satisfying E ⊂ Q× Σ∗ × Γ ∗ ×Q. For any transition in the form (q, x, y, p) with
q, p ∈ Q, x ∈ Σ∗ and y ∈ Γ ∗, we will write it as qx → yp. The transduction rule
qx → yp means that if the finite control is in state q and it reads the substring x

then it changes to state p and writes the substring y. We define a direct transition

step as follows
uqxv ⊢ uypv iff qx → yp ∈ E

The reflexive and transitive closure of ⊢ will be denoted by ⊢∗. The trans-
duction of an input string x will be defined as

T (x) = {y ∈ Γ ∗ : q0x ⊢∗ yp, p ∈ F}

We can extend the previous definition over languages as

T (L) =
⋃

x∈L

T (x)

Finally, we can take the following normal form in transducers: F = {qf},
E ⊂ Q − {qf} × (Σ ∪ {λ}) × (Γ ∪ {λ}) × Q − {q0}.

3 Dogmatic P systems

In this section, we introduce dogmatic P systems that work with string-objects,
in a transduction-like approach, as it was defined in [4]. The Central Dogma of
Molecular Biology is our source of inspiration for the variant of P system which
we will propose in the following. It establishes a metaphor of how DNA strands
in the living cell are transformed into protein products by means of information
storage and transformation [2].

First, we will introduce the region rules to work with.
A dogmatic rule is defined as follows

u : vpos → wad1,ad2,··· ,adk

where u, v are strings, pos ∈ {l, r, ∗} and for all i : 1 ≤ i ≤ k adi ∈
{here, out, inj}. The meaning is the following: Provided that there exist a string
object u in the region (we can omit the presence of u), all the worm objects
with substring v at position pos (which means, rightmost one (r), leftmost one
(l) or arbitrary position (∗)) change substring v by w and send a copy of the
new string-object at the regions defined by adi after eliminating the original
string-object from the region.

The addressing label inj, can be directly applied to contiguous regions at the
same level. That is, if there exist regions j and i inside the same region, then a
rule at region i can send string-objects to region j directly.

We define a Dogmatic P system as the following construct

Π = (V, µ, A1, · · · , Am, (R1, ρ1), · · · , (Rm, ρm), i0),



where all the elements are defined in the usual way with the exception of
Ai, 1 ≤ i ≤ m which is a finite set of strings associated with the region i (the
axioms), Ri, 1 ≤ i ≤ m which is a finite set of dogmatic rules over V associated
with the ith region, and ρi which is a partial order relation over Ri specifying a
priority.

Initially, the system holds the set of axioms at every region. Then, all the rules
are applied over the strings defined at every region. The system halts whenever
no rule can be applied at any region.

The language generated by Π is the set of string-objects collected at region
i0. In the case that i0 = ∞, the language is collected in external mode as the
set of strings in the environment. The language generated by Π is denoted by
L(Π). Observe that if the language is infinite then the system will never halt so
it will add new string-objects to the output region or the environment.

We can enunciate the following result that relates dogmatic P systems and
transducers

Theorem 1. Every transducer can be simulated by a dogmatic P system.

Proof. Let T = (Q, Σ, Γ, q0, E, F ) be a transducer with Q = {q0, · · · , qn} and
F = {qn}, according to the normal form that we have imposed.

Then, we propose the following dogmatic P system

Π = (V, µ, A, A0, · · · , An, (R, ρ), (R0, ρ0), · · · , (Rn, ρn),∞)

where

– V = Σ ∪ Γ ∪ Γ̂ ∪ {#}, where Γ̂ = {â : a ∈ Γ}.
– µ = [[0]0, · · · , [n]n] (we have omitted a label for the skin region).
– A0 = {#w}, A = ∅, and for all i : 1 ≤ i ≤ n Ai = ∅.
– type (a) rules: For every rule q0x → yqj ∈ P , with x 6= λ and y 6= λ, we

will add the rule #xl → #ŷinj
if qj 6= q0 or the rule #xl → #ŷhere if qj = q0

to R0

– type (b) rules: For every rule qix → yqj ∈ P , with x 6= λ and y 6= λ, and

for every symbol b̂ ∈ Γ̂ ∪ {#} we will add the rule b̂xl → b̂ŷinj
if qi 6= qj or

the rule b̂xl → b̂ŷhere if qi = qj to Ri

– type (c) rules: For every symbol a ∈ Σ add the rule ar → ahere to the
region Rn

– type (d) rules: For every symbol â ∈ Γ̂ add the rule âr → aout to the
region Rn

– type (e) rules: Add to R the rules {âl → ahere}
– type (f) rule: #l → λout

We will explain the rules in the system as follows: type (a) rules start the
transduction of the input string w (here, #w) from the initial state. Hence,
we use the # symbol as a left delimiter of the string to be transduced. The
alphabet Γ̂ is used to mark the symbols that have been transduced during the
transduction process. Type (b) rules simulate the transitions in the transducer.



Observe that we use the address inj to change the state in the finite control and
the address here to simulate the transducer loops. Type (c) rules are used to
block those strings that arrive to a final state without finishing the translation
process. Finally, type (d) rules output the transduced strings that arrive to a
final state with a concluded translation process.

The priorities of the rules in regions Ri keep the following order: type (a)
rules > type (b) rules > type (c) rules > type (d) rules.

The rules of the skin region are explained as follows: type (e) rules are used to
restore the string symbols of the transduced string in order to output the trans-
duced strings according to the alphabet Γ . The rule of type (f) is used to send
the transduced string outside the system so we obtain it from the environment.
Here, the priorities are: type (e) rules > type (f) rule.

If we input the string #w, then T (w) ∈ L(Π). We can observe that the
transitions from T are simulated by the P system by means of the rules of type
(a) and (b). If a complete transduction arrives to a final state, then rules of type
(d) are applied and the string is sent to the skin region. Finally, the rules of type
(e) are applied and the transduced string is sent out without the left mark # by
applying the rule of type (f).

Observe that in the proposed model we have avoided the case qx → p (i.e.
y = λ). In this case, type (a) rules should be written as #xl → #inj

or #xl →
#here. The same holds for type (b) rules where they should be in the form

b̂xl → b̂inj
or b̂xl → b̂here.

In the case q → yp (i.e. x = λ), rules of type (b) should take the form

b̂al → b̂ŷainj
or b̂al → b̂ŷahere for every symbol a ∈ Σ and b ∈ Γ . In addition

the rules #al → #ŷainj
or #al → #ŷahere should be added in type (b) (this is

the case when the transducer has erased some prefixes by using the rules qx → p

which we will discuss next).
We should consider the case when the transducer rule q → yp is applied

at the end of the string. Here, we should add the rules âbl → âbhere for every
symbols a ∈ Γ and b ∈ Σ (these rules block the strings to avoid that a suffix is
added before finishing the complete translation of the string). In addition, with
a lower priority, we have the rules âr → âŷinj

or âr → âŷhere for every symbol
a ∈ Σ. These rules have the same priority as type (d) rules in region n, so the
system non-deterministically outputs the transduced string or keeps on adding
new suffixes according to the transducer rule.

We have omitted the case q → p (i.e. x = y = λ) given that we can obtain
transducers with no such kind of rules in a normal form.

References

1. Berstel, J: Transductions and Context-Free Languages. Teubner-Verlag (1979)
2. Cohen, W.W.: A Computer Scientist’s Guide to Cell Biology. Springer (2007)
3. Păun, Gh.: Membrane Computing. An Introduction. Springer (2002)
4. Sempere, J.M.: Dogmatic P Systems. BWMC 2010 (in press.)


