
Conway’s Game of Life accelerated with OpenCL

Thomas Rumpf

Friedrich-Schiller-University Jena, Germany
Department of Mathematics and Computer Science

thomas.rumpf@uni-jena.de

Abstract. We introduce a massively data-parallel implementation of
John Conway’s cellular automaton Game of Life in-silico which provides
the user with a high flexibility to modify initial settings and progression
rules. Written in C/C++ and employing the open programming inter-
face OpenCL our program utilizes the parallel computing architecture
of modern graphics cards leading to a significant speed-up in estimat-
ing artificial life-form generations in comparison to ordinary CPU-based
implementations. Custom input files for specification of initial configu-
rations as well as a variety of features to control the course of the game
on the fly contribute to improve the productivity in conducting experi-
mental studies using our cellular automaton framework.

Key words: Game of Life, OpenCL, OpenGL, parallel computing, GPGPU

1 Introduction

John Conway designed the cellular automaton Game of Life in 1970 to prove that
it is possible to build a simple yet powerful machine which can simulate the basic
concepts of life. The outcome of his automaton had to be unpredictable meeting
three desiderata: firstly there should be no initial pattern for which there is a
simple proof that the population can grow without limit, secondly initial patterns
that apparently do grow without limit and thirdly initial patterns fading away,
settling into a stable configuration or entering an oscillating phase [2].

He achieved these goals employing a simple two-dimensional board of equally
shaped cells which had only two states – dead or alive. Starting with a self-chosen
allocation of alive and dead cells the game evolves with each generation while
there are some simple rules which have to be applied simultaneously at each
cell on the board after each generation. If a dead cell has exactly three alive
cells in its Moore neighborhood it is reborn in the next generation. This type
of neighborhood comprises the eight cells surrounding a central cell on a two-
dimensional square lattice. Alive cells survive the current generation if they have
exactly two or three alive cells as neighbors. In all other cases alive cells die and
dead cells stay dead. These rules can be symbolized as B3/S23 which are two
lists of numbers representing the birth and survival requirements of dead and
alive cells.

Our implementation of the Game of Life evolved as a project for Program-
ming with CUDA and Parallel Algorithms at the University of Jena. Here we



aimed to identify a problem which is usually solved with CPUs but could be im-
proved by the use of GPUs which are specialized for compute-intensive, highly
parallel computation. With the introduction of the Compute Unified Device Ar-
chitecture (CUDA) by NVIDIA in 2006 programmers are now able to use these
computing power for general purposes (GPGPU) [3] [4].

Forward-looking we decided to use OpenCL for this project which is an open
royalty-free standard for general purpose parallel programming across CPUs,
GPUs and other processors [6]. This means the user is free to use GPUs from
NVIDIA [3] or ATI [5] and other parallel processors found in servers and hand-
held or embedded devices.

Fig. 1. Bill Gosper’s glider gun using rule B3/S23 and generation 235 of a pattern
similar to the sierpinski triangle starting with a single alive cell and using rule B1/S12

2 Challenges

One of the main challenges of implementing the Game of Life with C/C++ and
OpenCL was the potential infinite board of cells. Since memory boundaries are
finite on both the host system and the GPU, we decided to use arrays with a
fixed size representing the current and next generation but also implemented a
switch for wrapping and clamping mode of the board. For example in wrapping
mode a cell in the middle of the left border reads the state of the five surrounding
cells in its local environment and reads the state of the three cells which are in
the middle of the right border. In clamping mode all requests for states of cells
outside of the fixed board return the value of a dead cell.

The OpenGL extension of C/C++ is used for visualizing the board and its
cells. When we were developing this program with the latest NVIDIA driver
version 195.17 it was not possible to display board generations that were calcu-
lated and stored on the GPU directly with the GPU. Our implementation needs
to copy each generation back to the host system and then use OpenGL for a
graphical output, again on the GPU. This slows down the calculation of more
generations considerably. Thus, we implemented a switch that allows skipping
the visualization of certain generations by calculating more generations on the



GPU while the host system copies a single generation from the GPU. Further
speed-ups can be achieved by implementing the interoperation between OpenCL
and OpenGL which will be included in future drivers of NVIDIA and ATI.

3 Optimizations

From a technical point of view we applied certain optimizations that speed up
the process of calculating generations. Instead of using simple arrays OpenCL
offers two-dimensional image objects which are usually used as memory for tex-
tures and cannot be directly accessed using a pointer but with built-in read and
write functions. Each image element is a four-component vector which represents
the values red, green, blue and the opaqueness of the color as an alpha value. In
our case a dead cell has the color black (R0,G0,B0,A1) and a alive cell is white
(R255,G255,B255,A1). The advantage of images is that the elements of a read
function are cached which offers a higher performance when reading image loca-
tions that are close to each other. Additionally images offer the option to easily
toggle between wrapping and clamping mode. The OpenCL standard specifies
that an image object has a maximal width and height of at least 8192 pixel so
the latest GPUs may support even larger images. Unfortunately the most recent
ATI driver version 10.2 offered no image support thus right now our program is
limited to the use of NVIDIA GPUs.

Another relevant optimization is focused on applying the rules for each gen-
eration. To determine the next state of a cell only two values are required –
its current state and the number of alive cells in its Moore-neighborhood. To
avoid lots of nested if-then constructs to simulate a rule like B3/S23, we have
used a look-up table where each entry represents the state of a cell in the next
generation if it has the amount of alive neighbors according to the applied rule.

With these optimizations the program is approximately 16 times faster than
a naive CPU version of the Game of Life. Compared to fastest known algorithm
HashLife by Bill Gosper [7] which uses forward calculation our program is at
best only five times slower than the CPU implementation of HashLife which is
included in the application Golly [8]. However, to implement this algorithm with
OpenCL can be seen as a challenging task due to the memory limitations on
a GPU. All these tests were made on a machine with an Intel Xeon E5420 @
2.50GHz, an NVIDIA GTX 260 and different board sizes ranging from 256x256 to
2048x2048. Graphics cards of future generations would give even better results.

4 Features and limitations

Besides being able to start with a random assignment of alive and dead cells our
program can also read patterns for starting populations from human-editable
RLE (Run-length encoding) files [9]. If a rule is specified in the file it will be used
instead of the default B3/S23. This default rule can also be changed to any rule
that can be described in the same way, for example B1357/S02468 or B1/S12.
Here is an example of a command to start our program with a random population



whose density of alive cells is 40%, follows the rule B1/S12 and covers a board
with a width and height of 1024 cells: ./GameOfLife -r 0.4 -l 12/1 1024.

The OpenGL interface offers zooming in and out of the board or moving
around giving comfortable access to the displayed generations. One can also
enable a grid for the board however, with very large image sizes this can slow
down the display speed. On the other side if the display of generations is too
fast one can adjust the waiting time between generations or even stop the game
after each generation.

There is one limitation of the program which regards the values of the board
size. When using the default wrapping mode images sizes are constrained to be
a power of two and the width and height needs to be the same value, too. The
problem is related to inaccurate values when reading the state of a cell from the
image object as normalizing the image coordinates in wrapping mode to a fixed
range is mandatory in OpenCL.

5 Outlook

With its easy to use interface for dynamic rules and starting patterns this pro-
gram offers researchers on cellular automata a fast and efficient way to explore
new interesting patterns [10] [11].

Acknowledgment

I would like to thank Jens K. Mueller and Waqar Saleem for sharing their knowl-
edge of CUDA and providing helpful suggestions for this Game of Life imple-
mentation and Thomas Hinze and Sascha Schaeuble for advice.

References

1. FSU Jena, Department of Mathematics and Computer Science: Programming
with CUDA, http://theinf2.informatik.uni-jena.de/For_Students-p-9/

Lectures/Programming_with_CUDA-p-41/WS_2009_2010.html#projects
2. Martin Gardner – Mathematical Games (October 1970),

http://www.ibiblio.org/lifepatterns/october1970.html
3. NVIDIA CUDA, http://developer.nvidia.com/object/gpucomputing.html
4. Cecilia, J. M., Garcia, J. M., Guerrero, G. D., Martinez-del-Amor, M. A., Perez-

Hurtado, I., Perez-Jimenez, M. J.: Simulation of P systems with active membranes
on CUDA. Briefings in Bioinformatics (December 2009)

5. ATI Stream Technology, http://www.amd.com/stream
6. Khronos OpenCL Specification, https://www.khronos.org/registry/cl/
7. Gosper, R. Wm.: Exploiting regularities in large cellular spaces. Physica D: Nonlin-

ear Phenomena, Volume 10, Issue 1-2, p. 75–80 (1984)
8. Golly: an open source, cross-platform appl., http://golly.sourceforge.net/
9. Cellular Automata file formats: RLE,

http://psoup.math.wisc.edu/mcell/ca_files_formats.html#RLE
10. Game of Life News, http://pentadecathlon.com/lifeNews/index.php
11. LifeWiki, http://conwaylife.com/wiki/

http://theinf2.informatik.uni-jena.de/For_Students-p-9/Lectures/Programming_with_CUDA-p-41/WS_2009_2010.html#projects
http://theinf2.informatik.uni-jena.de/For_Students-p-9/Lectures/Programming_with_CUDA-p-41/WS_2009_2010.html#projects
http://www.ibiblio.org/lifepatterns/october1970.html
http://developer.nvidia.com/object/gpucomputing.html
http://www.amd.com/stream
https://www.khronos.org/registry/cl/
http://golly.sourceforge.net/
http://psoup.math.wisc.edu/mcell/ca_files_formats.html#RLE
http://pentadecathlon.com/lifeNews/index.php
http://conwaylife.com/wiki/

	Conway's Game of Life accelerated with OpenCL

