
P Systems with Elementary Active Membranes:

Beyond NP and coNP

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{porreca,leporati,mauri,zandron}@disco.unimib.it

Abstract. We prove that a uniform family of P systems with active
membranes, where division rules only operate on elementary membranes
and dissolution rules are avoided, can be used to solve the following
PP-complete decision problem in polynomial time: given a Boolean for-
mula of m variables in 3CNF, do at least

√
2m among the 2m possi-

ble truth assignments satisfy it? As a consequence, the inclusion PP ⊆
PMCAM(−d,−n) holds: this provides an improved lower bound on the
class of languages decidable by this kind of P systems.

1 Introduction

P systems with active membranes [11] are a variant of P systems where a par-
ticularly important role in the computation is performed by the membranes
themselves: they possess an electrical charge that can inhibit or activate the
rules that govern the evolution of the system, and they can also increase expo-
nentially in number via division rules. The latter feature makes them extremely
efficient from a computational complexity standpoint: using exponentially many
membranes that evolve in parallel, they can be used to solve PSPACE-complete
problems [12, 2] in polynomial time.

When the ability of dividing membranes is limited, the efficiency appar-
ently decreases. The so-called Milano theorem [14] tells us that no NP-complete
problem can be solved in polynomial time without using division rules, unless
P = NP holds.

On the other hand, the computing power of polynomial-time P systems
with division rules operating only on elementary membranes (that is, mem-
branes not containing other membranes) has not been yet characterised pre-
cisely. It is a known fact that elementary division rules suffice to efficiently solve
NP-complete problems (and, due to closure under complement, also coNP-
complete ones). This result dates back to 2000 in the semi-uniform case [14],
where each input is mapped to a specific P system solving the problem for that
particular input, and to 2003 in the uniform case [9], where all inputs of the
same size are associated with a single P system. In terms of complexity classes,
this is written NP ∪ coNP ⊆ PMCAM(−n). Since these results do not re-
quire membrane dissolution rules, we also have the (possibly stronger) inclusion

NP ∪ coNP ⊆ PMCAM(−d,−n); the systems of type AM(−d,−n) are some-
times called P systems with restricted elementary active membranes [2].

No significant improvement on the NP ∪ coNP lower bound for the com-
plexity classes PMCAM(−n) and PMCAM(−d,−n), or the corresponding semi-
uniform classes, has been found since then, although a PSPACE upper bound
was proved in 2007 [13].

In 2008, Alhazov et al. [1] proved that P systems with elementary active
membranes can be used to solve PP-complete problems, but their result is not
directly related to PMCAM(−n), since it requires either cooperative evolution
rules, a very strong feature which is not a part of standard P systems with
active membranes, or post-processing data of exponential size (when expressed
in unary).

The complexity class PP appears to be larger than NP, since it contains
NP as a subset and it is closed under complement: thus NP ∪ coNP ⊆ PP.
In this paper we prove that a PP-complete problem (and, as a consequence,
the totality of problems in PP) can indeed be solved in polynomial time using
standard P systems with restricted elementary active membranes.

2 Definitions

We begin by recalling the definition of P systems with restricted elementary
active membranes.

Definition 1. A P system with restricted elementary active membranes [2], in
symbols AM(−d,−n), of the initial degree m ≥ 1 is a tuple

Π = (Γ, Λ, µ, w1, . . . , wm, R)

where:

– Γ is a finite alphabet of symbols, also called objects;
– Λ is a finite set of labels for the membranes;
– µ is a membrane structure (i.e., a rooted unordered tree) consisting of m

membranes enumerated by 1, . . . , m; furthermore, each membrane is labelled
by an element of Λ, not necessarily in a one-to-one way;

– w1, . . . , wm are strings over Γ , describing the multisets of objects placed in
the m initial regions of µ;

– R is a finite set of rules.

Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

The rules are of the following kinds:

– Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
multiset w).

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and charge β and
γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

A configuration in a P system with active membranes is described by its cur-
rent membrane structure, together with its charges and the multisets of objects
contained in its regions. The initial configuration is given by µ, all membranes
having charge 0 and the initial contents of the membranes being w1, . . . , wm. A
computation step changes the current configuration according to the following
principles:

– Each object and each membrane can be subject to only one rule during a
computation step.

– The rules are applied in a maximally parallel way: each object which appears
on the left-hand side of applicable evolution, communication, or elementary
division rules must be subject to exactly one of them; the same holds for each
membrane which can be involved in a communication or division rule. The
only objects and membranes which remain unchanged are those associated
with no rule, or with unapplicable rules.

– When more than one rule can be applied to an object or membrane, the
actual rule to be applied is chosen nondeterministically; hence, in general,
multiple configurations can be reached from the current one.

– When division rules are applied to a membrane, the multiset of objects to
be copied is the one resulting after all evolution rules have been applied.

– The skin membrane cannot be divided. Furthermore, every object which is
sent out from the skin membrane cannot be brought in again.

A halting computation C of a P system Π is a finite sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π , every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration
can be reached from Ck (i.e., no rule can be applied). P systems might also
perform non-halting computations; in this case, we have infinite sequences C =
(Ci : i ∈ N) of successive configurations.

We can use families of P systems with active membranes as language recog-
nisers, thus allowing us to solve decision problems.

Definition 2. A recogniser P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

In what follows we will only consider confluent recogniser P systems with ac-
tive membranes, in which all computations starting from the initial configuration
agree on the result.

Definition 3. Let L ⊆ Σ⋆ be a language and let Π = {Πx : x ∈ Σ⋆} be a family
of recogniser P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ⋆, the result of Πx is acceptance iff x ∈ L.

Usually some uniformity condition, inspired by those applied to families of
Boolean circuits, is imposed on families of P systems. Two different notions of
uniformity have been considered in the literature; they are defined as follows.

Definition 4. A family of P systems Π = {Πx : x ∈ Σ⋆} is said to be semi-
uniform when the mapping x 7→ Πx can be computed in polynomial time, with
respect to |x|, by a deterministic Turing machine.

Definition 5. A family of P systems Π = {Πx : x ∈ Σ⋆} is said to be uniform
when there exist two polynomial-time Turing machines M1 and M2 such that,
for each n ∈ N and each x ∈ Σn

– M1, on input 1n (the unary representation of the length of x), outputs the
description of a P system Πn with a distinguished input membrane;

– M2, on input x, outputs a multiset wx (an encoding of x);
– Πx is Πn with wx added to the multiset located inside its input membrane.

In other words, the P system Πx associated with string x consists of two parts;
one of them, Πn, is common for all strings of length |x| = n (in particular, the
membrane structure and the set of rules fall into this category), and the other
(the input multiset wx for Πn) is specific to x. The two parts are constructed
independently and, only as the last step, wx is inserted in Πn.

Time complexity classes for P systems [9] are defined as usual, by restrict-
ing the amount of time available for deciding a language. By PMCAM(−d,−n)

(resp., PMC⋆
AM(−d,−n)) we denote the class of languages which can be decided

by uniform (resp., semi-uniform) families Π of confluent P systems with re-
stricted elementary active membranes where each computation of Πx ∈ Π halts
in polynomial time with respect to |x|. These classes are known to be closed
under complement and polynomial-time reductions.

The complexity class PP (Probabilistic P) was first introduced to charac-
terise those decision problems which can be solved efficiently by a probabilistic
Turing machine, whose probability of error on every input is strictly less than
1/2 [6]. An equivalent definition of PP is usually given in terms of nondetermin-
istic Turing machines by altering the notion of acceptance [8].

Definition 6. The complexity class PP consists of all languages L ⊆ Σ⋆ which
can be decided in polynomial time by a nondeterministic Turing machine N with
the following acceptance criterion: N accepts x ∈ Σ⋆ iff more than half of the
computations of N on input x are accepting.

3 Solving a PP-Complete Problem

One of the standard PP-complete problems is Majority-SAT [4, 8]: given a
Boolean formula ϕ of m variables in conjunctive normal form, determine whether
more than half of the 2m possible truth assignments satisfy it. However, it is not
easy to provide a polynomial-time uniform solution for this problem, since the
clauses of ϕ may contain any number of literals between 1 and 2m. The usual
solution in membrane computing is to require the input formula to have exactly
three different literals per clause (see, e.g., [10]).

Unfortunately, the resulting decision problem Majority-3SAT is not known
to be PP-complete. In particular, the standard reduction from SAT to 3SAT [5]
is not applicable here, as it requires the addition of “dummy” variables, which
increase the number of possible assignments without necessarily increasing the
number of satisfying ones: this can decrease the ratio of satisfying assignments
over total assignments from above 1/2 to a value less than or equal to this
threshold.

There is, however, yet another slight variation of the problem that is suitable
for our purposes.

Definition 7. Sqrt-3SAT1 is the following decision problem: given a Boolean
formula of m variables in 3CNF, determine whether the number of truth assign-
ments satisfying it is at least

√
2m.

The problem Sqrt-3SAT is known to be PP-complete [3], and it is very
close in spirit to Majority-3SAT. Our solution to this problem follows the
canon for NP-complete problems in membrane computing [11, 14], but with an
additional intermediate phase (numbered 3 in the following algorithm).

Algorithm 1. Solving Sqrt-3SAT on input ϕ, a 3CNF formula of m variables.

1. Generate 2m membranes using elementary division, each one containing a
different truth assignment to the variables occurring in ϕ.

2. Evaluate ϕ under the 2m assignments, in parallel, and send out from each
membrane an object t whenever the formula is satisfied by the corresponding
assignment.

3. Erase ⌈
√

2m⌉−1 instances of t (or all of them, if less than ⌈
√

2m⌉−1 occur).
4. Output yes if at least one instance of t remains; otherwise, output no.

Notice that, by removing Phase 3, we obtain the standard membrane com-
puting algorithm for SAT. The additional phase was first proposed by Alhazov

1 This problem is denoted by #3SAT(≥ 2m/2) in the original paper [3].

et al. [1] for checking the value of the permanent of a matrix, but the authors
used cooperative object evolution rules, that are not part of standard P systems
with active membranes. In Section 3.2 we show how to implement this phase
using elementary division and communication rules, together with all the other
steps of Algorithm 1.

3.1 Encoding of Formulae

Formulae in 3CNF are easy to encode as binary strings [7, 10]. Given m variables,
only 8

(

m
3

)

clauses without repeated variables exist: we have
(

m
3

)

sets of three out
of m variables, and each one of them can be either positive or negated. Once
an easily-computable enumeration of the clauses has been fixed (e.g., under a
lexicographic order, the i-th clause can be computed from i in polynomial time)
a formula ϕ can be represented by a string 〈ϕ〉 of n = 8

(

m
3

)

bits, where the i-th
bit is set iff the i-th clause occurs in ϕ.

Under this encoding, a string in {0, 1}n is a valid formula iff n = 8
(

m
3

)

for
some m ∈ N. The number of variables m can be easily recovered in polynomial
time, given n in unary notation, by finding the unique positive integer root of
the polynomial p(m) = 8

(

m
3

)

−n = 4
3m3 − 4m2 + 8

3m−n. If no such root exists,
we can deduce that the input is not well-formed with respect to our encoding.

3.2 Solution to Sqrt-3SAT

The implementation of Algorithm 1 is a uniform variant of the solution described
by Zandron et al. [14]. To all strings x ∈ {0, 1}n with n = 8

(

m
3

)

, representing
Boolean formulae ϕ of m variables, we associate a P system with restricted
elementary active membranes Πn. The initial configuration of Πn (excluding
the input multiset) is the following one:

C0 =
[

q0r0 [p0x1x2 · · ·xm]01 [bi1]
0
2[bi2]

0
2 · · · [bih

]02
]0

0

Here the objects x1, . . . , xm represent the variables of ϕ, while p0, q0, and r0 are
objects used to implement three timers, counting from zero.

The number of membranes having label 2 and their contents are determined
as follows. Let k = ⌈

√
2m⌉ − 1, and consider the binary representation of k: for

each i = 0, . . . , ⌊log k⌋, if the i-th least significant bit of k (counting from 0)
is 1, then we add to C0 a copy of membrane 2, containing the single object bi;
otherwise we add nothing. In other words, h and i1 < i2 < · · · < ih are the
unique integers such that k = 2i1 + 2i2 + · · · + 2ih . Clearly h is bounded by k,
which is in turn bounded by m

2 ; hence the configuration C0 can be costructed in
polynomial time with respect to n.

The input multiset, obtained from 〈ϕ〉, is placed inside membrane 1, and
contains all the objects ci such that the i-th clause does not occur in ϕ.

For instance, suppose m = 3, hence n = 8
(

3
3

)

= 8. The eight (up to reordering
of literals) clauses over three variables x1, x2, x3 can be enumerated as

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ ¬x3 x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ x2 ∨ x3 ¬x1 ∨ x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x2 ∨ ¬x3

and the formula ϕ = (x1∨¬x2 ∨x3)∧ (¬x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2∨x3) is then
encoded as 〈ϕ〉 = 0010 0110. The corresponding input multiset is c1c2c4c5c8.

Starting from the initial configuration, including the input multiset, the com-
putation proceeds as follows.

Phase 1 (Generate). Each variable object xi is used to divide membrane 1,
and is replaced by a “true” object ti on one side, and by a “false” object fi on
the other, denoting the two possible truth values that can be assigned to variable
xi. The corresponding rules are

[xi]
0
1 → [ti]

0
1[fi]

0
1 for 1 ≤ i ≤ m.

While the membranes having label 1 divide, thus generating 2m copies (each one
containing a different assignment), the timer p0 is incremented, one step at a
time, up to m:

[pj → pj+1]
0
1 for 0 ≤ j ≤ m − 1.

The object pm is then sent out of membrane 1, while changing the charge of the
membrane to positive, using the rule [pm]01 → []+1 pm.

The object pm is immediately brought back in (and renamed to u0) via
pm []+1 → [u0]

+
1 . Simultaneously, each object ti and fi is replaced by a set of

objects denoting the clauses that are satisfied when the variable xi is true or
false, respectively, i.e.:

[ti → ci1 · · · cih
]+1 for 1 ≤ i ≤ m and xi occurs in clauses i1, . . . , ih;

[fi → ci1 · · · cih
]+1 for 1 ≤ i ≤ m and xi occurs in clauses i1, . . . , ih.

Notice that computing these sets of clauses does not require the input formula ϕ,
but only its size n (this is consistent with a uniform construction). The clause-
objects cj are produced in the (m + 2)-th step.

While all these events described above occur inside the membranes labelled
by 1, we also divide the membranes with label 2 until we have ⌈

√
2m⌉−1 copies.

Indeed, each object bi is used to create 2i copies, according to the following rules:

[bi]
0
2 → [bi−1]

0
2[bi−1]

0
2 for 1 ≤ i ≤ ⌊log k⌋.

Producing all copies of membrane 2 requires a number of steps bounded by

⌊log k⌋ = ⌊log⌈
√

2m⌉ − 1⌋ ≤ log⌈
√

2m⌉ ≤ m

2
+ 1 ≤ m + 2.

Hence, Phase 1 requires a total of m + 2 steps.

Phase 2 (Evaluate). In this phase, the object uj inside each copy of membrane
1 behaves as a counter for the number of satisfied clauses, and initially it has
the value u0.

Now consider the contents of the membranes having label 1. If the i-th clause
occurs in ϕ and it is satisfied by the truth assignment corresponding to the
particular copy of membrane 1 under consideration, then one or more instances
of object ci have been generated in Phase 1. If this clause does not occur in ϕ,
then the object ci has been placed in membrane 1 as part of the input multiset:
the first clause is then considered to be satisfied2. Finally, if this clause does occur
in ϕ but it is not satisfied, then no instance of ci occurs inside membrane 1.

We find out whether the clauses are satisfied, one by one in the order estab-
lished in Section 3.1, by checking whether an instance of the object c1 occurs,
then decrementing the subscript of all the other objects cj by one; this procedure
is repeated until an unsatisfied clause is found, or all of them are found to be
satisfied.

If c1 does indeed occur, then it is sent out and changes the charge of 1 to
negative, using the rule [c1]

+
1 → []−1 c1. While membrane 1 is negative, the other

subscripts are decremented:

[cj → cj−1]
−

1 for 2 ≤ j ≤ n.

Simultaneously, uj increments its subscript via

[uj → uj+1]
−

1 for 0 ≤ j < n,

and c1 re-enters membrane 1 (not necessarily the same instance of membrane
1, but any negatively charged one) as the “junk” object #, and sets its charge
back to positive via c1 []−1 → [#]+1 .

Phase 2 now restarts, with all clause-objects having their subscript decre-
mented by one. If one of the objects cj is missing for some j = 1, . . . , n, then
the computation in that copy of membrane 1 halts prematurely, and un is never
reached. On the other hand, if all objects c1, . . . , cn exist inside a certain copy
of membrane 1, the object un is reached in 2n steps: we can then conclude that
the formula is completely satisfied, and send out a t object to signal it, using the
rule [un]+1 → []+1 t. Notice that all t objects are sent out simultaneously from
all copies of membrane 1.

The total number of steps required for Phase 2 is 2n + 1 = 16
(

m
3

)

+ 1.

Phase 3 (Erase). When the instances of objects t reach the skin membrane,
labelled by 0, each copy of membrane 2 absorbs one of them, if any is available,
using the communication rule t []02 → [#]+2 . After this computation step, one or
more copies of t remain inside membrane 0 iff the number of instances of t was
at least

√
2m, that is, iff ϕ ∈ Sqrt-3SAT.

Phase 4 (Output). The sequences of objects qj and rj , which begin with q0

and r0 and whose behaviour we have not described yet, are meant to count the

2 This is consistent with the “true” value being the identity of conjunction.

number of steps across Phases 1, 2, and 3, that is, ℓ = (m+2)+
(

16
(

m
3

)

+1
)

+1.
This is accomplished by using the following evolution rules:

[qj → qj+1]
0
0 for 0 ≤ j ≤ ℓ;

[rj → rj+1]
0
0 for 0 ≤ j ≤ ℓ + 2.

When the subscript of q reaches ℓ, Phase 3 has just finished. This object is
sent out in order to change the charge of membrane 0 to positive, using the rule
[qℓ]

0
0 → []+0 #; this enables any remaining instance of t inside membrane 0 to exit

and change again the charge of the skin to negative, using the rule [t]+0 → []−0 #.
If no object t exists inside membrane 0, the charge remains positive.

During the next computation step, the subscript of r is ℓ+2, and this object
is finally sent out, either as yes or no depending on the charge of membrane 0:

[rℓ+2]
+
0 → []+0 no [rℓ+2]

−

0 → []−0 yes.

According to the argument above, the object emerging from membrane 0 corre-
sponds to the correct answer to the problem.

The sizes of the sets of rules (hence, also the size of the alphabet) described
in each step of the algorithm are clearly bounded by a polynomial in n and
computable efficiently from 1n; thus, we can conclude that Sqrt-3SAT has a
uniform solution in polynomial time.

Theorem 1. Sqrt-3SAT ∈ PMCAM(−d,−n), hence PP ⊆ PMCAM(−d,−n)

via polynomial-time reductions. ⊓⊔

4 Conclusions

We improved one of the earliest results related to P systems with active mem-
branes, namely that elementary division is sufficient to solve NP-complete prob-
lems in polynomial time, by proving that PP problems can also be solved ef-
ficiently by the same class of P systems, and without the need for dissolution
rules. The method is a generalisation of the classic membrane computing al-
gorithm schema for NP-complete problems, where all candidate solutions are
generated and then tested in parallel.

This result does still not provide, however, a characterisation of the com-
plexity classes PMCAM(−d,−n) and PMCAM(−n) in terms of Turing machines;
furthermore, neither the PP lower bound, nor the PSPACE upper bound are
known to be strict. We think that the question is worth further investigation,
with the goal of finally establishing whether nonelementary division rules are a
redundant feature of P systems with active membranes, or a fundamental one.

References

1. Alhazov, A., Burtseva, L., Cojocaru, S., Rogozhin, Y.: Solving PP-complete and
#P-complete problems by P systems with active membranes. In: Corne, D.W.,

Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing: 9th
International Workshop, WMC 2008, Edinburgh, UK, July 28–31, 2008, Revised
Selected and Invited Papers. Lecture Notes in Computer Science, vol. 5391, pp.
108–117. Springer (2009)

2. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informaticae
58(2), 67–77 (2003)

3. Bailey, D.D., Dalmau, V., Kolaitis, P.G.: Phase transitions of PP-complete satisfi-
ability problems. Discrete Applied Mathematics 155(12), 1627–1639 (2007)

4. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. Springer, 2nd edn.
(1995)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co. (1979)

6. Gill, J.T.: Computational complexity of probabilistic Turing machines. In: Proceed-
ings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 91–95
(1974)

7. Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. In: Win-
free, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 54, pp. 139–152 (1999)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
9. Pérez-Jiménez, M.J., Romero Jiménez, A., Sancho Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

10. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes: Trading time for space. Natural Computing, to appear

11. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

12. Sośık, P.: The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing 2(3), 287–298 (2003)

13. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1),
137–152 (2007)

14. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-
tems with active membranes. In: Antoniou, I., Calude, C., Dinneen, M.J. (eds.)
Unconventional Models of Computation, UMC’2K: Proceedings of the Second In-
ternational Conference, pp. 289–301. Discrete Mathematics and Theoretical Com-
puter Science, Springer (2001)

