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Abstract. In membrane computing, a relatively simple set of reaction
rules usually implies a complex “constructive” dynamics, in which novel
molecular species appear and present species vanish. Chemical organi-
zation theory (COT) is a new approach that deals with such systems
by describing chemical computing as a transition between organizations,
which are closed and self-maintaining sets of molecular species. In this
paper we show that for the case of mass-action kinetics some organiza-
tions are not feasible in the space of concentrations and thus need not to
be considered in the analysis. We present a theorem providing a criteria
for an unfeasible organization. This is a refinement of organization theory
making its statements more precise. In particular it follows for the design
of a membrane computing system that in each compartment the desired
resulting organization of a chemical computing process should be a fea-
sible organization. Unfeasible organizations might be used as transient
states in a decision process, because it is guaranteed that the system will
never enter a stationary state within an unfeasible organization.
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1 Introduction

Inspired by Fontana and Buss [6], Dittrich and Speroni have developed a general
definition of a chemical organization [4]. Compared to other network analysis ap-
proaches like elementary flux modes[13, 14], feedback loops[15], Petri nets [12] or
deficiency [5], organization theory works on a very abstract level which allows for
dealing with constructive dynamical systems. These systems allow for appearance
and disappearance of qualitatively new variables beyond a quantitative change
of a constant number of variables. They arise in particle physics, chemical sys-
tems or even in social systems [7] where communication can produce further, new
communication. In those systems chemical organization theory can be applied
for static [2, 3] and dynamic [11] analyses, description [9] or design of chemical



programs [8] despite a huge number of species effecting huge non-simulatable
systems or incomplete information.

Fixed points are important in the dynamical analysis of reaction systems [18].
Dittrich and Speroni have shown that every fixed point of a chemical reaction
system corresponds to an organization (Theorem 1 in [4]). Given kinetic laws,
there is not necessarily a fixed point for each organization. Thus, it is useful to
rule out such unfeasible organizations. Assuming mass-action kinetics, in this
paper we give a necessary and sufficient criterion for the feasibility of organiza-
tions. This criterion gives a refinement of the systems organizational structure
allowing for a better description of its dynamical behavior.

Membrane computing or P systems [19, 20] also deal with the understanding
of chemical reaction systems, but its focus is different. They are concerned with
reaction systems distributed to several compartments. We show that in a P
system membranes can effect the occurrence of organizations. In Section 2 the
basic concepts of chemical organization theory are provided. In Section 3 it is
introduced the feasibility of organizations in chemical organization theory, the
necessary and sufficient conditions to decide if an organization is feasible for
mass-action kinetics systems and it is discussed the relevance of feasibility in P
systems. In Section 4 there are presented some illustrative examples showing the
consequences of feasibility in chemical organization theory and the tight relation
between organizations, feasibility and membranes in the dynamics of a chemical
system. Finally we conclude the work with the indication of future work and
open questions.

2 Chemical organization theory (COT)

This chapter provides the basics of chemical organization theory. In what follows
let M = {s1, . . . , sm} be a finite set of m species reacting with each other
according to a finite set R = {r1, . . . , rn} of n reactions. Together, the set of
species and the set of reactions is called reaction network.

2.1 Preliminaries

Given a vector k ∈ Rn>0 containing a strictly positive rate constant for each
reaction, we can describe the dynamics of the species concentrations x by the
ODE

ẋ = Nv(x; k), (1)

where N ∈ Nm×n is the stoichiometric matrix and (v(x; k))i = ki ∗
∏m

j=1 xaij

j for
i = 1, . . . , n, is the flux according to mass-action kinetics. Here xj denominates
the concentration of the species sj . We call ODE 1 a chemical reaction system.

The number aij ∈ N≥0 denominates the number of occurences of sj in the
support (reactants) of the i-th reaction. Together these numbers form a matrix



A ∈ Nn×m. With the rate constants k on the diagonal of a diagonal matrix
K ∈ Nn×n we can write

v(x; k) = KxA. (2)

Definition 1. For a reaction ri ∈ R, the set supp(ri) ≡ {sj ∈ M : aij > 0} is
the support of ri.

Definition 2. Let P (M) be the power set of M and

φ : Rm≥0 → P (M) , x 7→ φ (x) ≡ {s ∈M : xs > 0} . (3)

For a state x ∈ Rm≥0, the set φ (x) is the abstraction of x. For a given set of
species S ⊆M, a state x ∈ Rm≥0 is an instance of S if and only if its abstraction
equals S.

2.2 Chemical organizations

The following definition is the core of chemical organization theory.

Definition 3. A subset of species S ⊆M is an organization if and only if

1. S is closed, i.e. none of the reactions with support within S produces a
species which is not contained in S, and

2. S is self-maintaining, i.e. there is a flux vector v = (v1, ..., vn) with Nv ≥
0 and

vi

{
> 0 ⇔ supp(ri) ⊆ S,
= 0 otherwise.

The following Theorem from [4] relates fixed points to organizations.

Theorem 1. If x is a fixed-point of the ODE 1, i.e. Nv(x; k) ≥ 0, then the
abstraction φ(x) is an organization.

Proofs can be found in [4] and [11].

Remark 1. Since fixed points play a crucial role in the analysis of dynamical sys-
tems [18], Theorem 1 provides a link between the behavior of a chemical reaction
system and its underlying set of reactions. This justifies the study of the systems
dynamics by chemical organization theory. In particular, organizations appear
in the long-term behavior of chemical reaction systems making the observation
of organizations in such systems provable [11].

Remark 2. The converse of Theorem 1 does not hold in general, i.e., given a
chemical reaction system, the underlying reaction network can exhibit an orga-
nization O for which there is no fixed point with abstraction equal to O. This
unfeasibility is studied in the next chapter.



3 Feasibility

In this section we introduce and study the feasibility of an organization. In what
follows assume that O ≡M is an organization.

3.1 Definitions

We are going to introduce the notations required to state the main theorem.

Definition 4. O is feasible with respect to k if and only if there is a vector of
concentrations x ∈ Rm>0 such that

Nv(x; k) ≥ 0. (4)

O is feasible if and only if it is feasible with respect to each k ∈ Rn>0. Otherwise
it is unfeasible.

Now we define the image Im(A) of the matrix A and the set Ker>0
≥0(N) derived

from the kernel of the matrix N by only allowing for vectors with all components
strictly positive and fulfilling an inequality instead of the equality required for
the definition of the kernel.

Definition 5. We define

Im(A) ≡ {y : y = Ax, x ∈ Rm}, (5)
Ker>0

≥0(N) ≡ {v ∈ Rn>0 : Nv ≥ 0}. (6)

Next we define the application of the logarithm function to vectors and sets of
vectors.

Definition 6. For a set U of vectors, a vector u = (u1,u2, ...) ∈ U and a
number β > 0 we define

logβ(u) ≡ (logβ(u1), logβ(u2), . . .)T , (7)
logβ(U) ≡ {w : w = logβ(u), u ∈ U}, (8)

where superscript T denotes vector transposition.

Lastly, we define arithmetic operations over sets of vectors.

Definition 7. For sets U, V of vectors we define

U + V ≡ {w : w = u + v, u ∈ U,v ∈ V }. (9)



3.2 Theorem

Now we state the main theorem which gives a necessary and sufficient criterion
for feasibility in mass-action kinetics.

Theorem 2. O is feasible if and only if

Rn \ (logβ(Ker>0
≥0(N))− Im(A)) = ∅. (10)

Proof. For any β > 0, O is feasible if and only if

∀k ∈ Rn>0 ∃x ∈ Rm>0 : Nv(x; k) ≥ 0 (11)
Eq. 2⇐⇒

∀k ∈ Rn>0 ∃x ∈ Rm>0, v̂ ∈ Rn>0 : Nv̂ ≥ 0 ∧ v̂ = v(x; k) = KxA (12)
Def. 5⇐⇒

∀k ∈ Rn>0 ∃x ∈ Rm>0, v̂ ∈ Ker>0
≥0(N) : v̂ = KxA (13)

⇔
∀k ∈ Rn>0 ∃x ∈ Rm>0, v̂ ∈ Ker>0

≥0(N) : logβ(v̂) = logβ(k) + A ∗ logβ(x) (14)

⇔
∀k ∈ Rn>0 ∃x ∈ Rm>0, v̂ ∈ Ker>0

≥0(N) : logβ(k) = logβ(v̂)−A ∗ logβ(x) (15)

k̂≡logβ(k)⇐⇒

∀k̂ ∈ Rn ∃x ∈ Rm>0, v̂ ∈ Ker>0
≥0(N) : k̂ = logβ(v̂)−A ∗ logβ(x) (16)

y≡A∗logβ(x)⇐⇒

∀k̂ ∈ Rn ∃y ∈ Im(A), v̂ ∈ Ker>0
≥0(N) : k̂ = logβ(v̂)− y (17)

w≡logβ(v̂)⇐⇒

∀k̂ ∈ Rn ∃y ∈ Im(A),w ∈ logβ(Ker>0
≥0(N)) : k̂ = w − y, (18)

⇔
Rn \ (logβ(Ker>0

≥0(N))− Im(A)) = ∅. (19)

Theorem 2 reveals how both the structure of the supports of the reactions (repre-
sented by A) and the stoichiometric matrix N restrict the possible flux vectors.
When the set of restrictions has a special structure the organization O is unfea-
sible. That means that there are rate constants such that there exist no species
concentrations to build up a flux vector v which is in Ker>0

≥0(N).

Remark 3. The set logβ(Ker>0
≥0(N)) is not a linear vector space with respect to

addition. This makes difficult the computational verification of Theorem 2 by
methods from linear algebra.

As a consequence of Theorem 2 we get the following statement about the exis-
tence of fixed points.



Corollary 1. If the set Rn\(logβ(Ker>0
≥0(N))−Im(A)) is not empty, then there

are rate constants k such that the ODE 1 has no fixed point with abstraction equal
O.

Proof. We assume that the set Rn \ (logβ(Ker>0
≥0(N)) − Im(A)) is not empty.

Then from Theorem 2 follows that O is unfeasible. Then there exists a vector of
rate constants k such that O is not feasible with respect to this k (Definition 4).
Also from Definition 4 follows that then for all vectors of concentrations x ∈ Rm>0

the inequality

Nv(x; k) ≥ 0 (20)

does not hold. Particularly, Nv(x; k) 6= 0 for all x ∈ Rm>0, i.e., there exists no
fixed point with abstraction equal O for the ODE 1.

Remark 4. If the set Rn \ (logβ(Ker>0
≥0(N)) − Im(A)) is empty, there can also

exist rate constants such that the ODE 1 has no fixed point with abstraction
equal O. The reason is that Nv(x; k) ≥ 0 does not imply Nv(x; k) = 0. And
fixed points require strict equality.

3.3 Feasibility in P systems

Now we know that the set of species representing an unfeasible organization O
is not probable to be observed in a single chemical reaction system which rep-
resents one compartment of a P system. We will show in the next section that
membranes can compensate for this phenomenon (cf. Example 5): a membrane
can provide several compartments each possibly containing different subsets of
species (feasible organizations) such that there union is O. In this case, the unfea-
sibility of organization O can be attributed to an incompatibility of two smaller
feasible organizations. I.e., whenever an unfeasible organization O can be written
as union of feasible organizations, membranes can allow for the appearance of O
even though it is unfeasible, because the membranes help to separate properly
the incompatible organizations. Furthermore, we will show that, even when an
exchange of molecules is permitted between the compartments, the unfeasible
organization can be maintained in time. Thus, in a P system, membranes can
allow for the appearance of those sets of species which - following the refinement
of chemical organization theory stated in the previous sections - could not appear
if there would not be a membrane. This implies that destruction of membranes
can lead also to the opposite effect, destabilizing the equilibria process described
above between unfeasible organizations (partially or totally) separated by the
membranes.

4 Examples

In this section there are shown different aspects of the unfeasibility as well as its
relation with P systems. In this section is used the notation of Theorem 2. The



following two examples show straight consequences of Theorem 2:
Example 1 Let M = {s1, s2} and R = {s1 → s2, s2 → s1}. We have

A =
(

1 0
0 1

)
, N =

(
−1 1
1 −1

)
.

Note that

Im(A) = R2, Ker>0
≥0(N) = {(v1, v2) ∈ R2

>0 : v1 = v2}.

Then we have
R2 \ (logβ(Ker>0

≥0(N))− Im(A)) = ∅.

Thus, M is feasible. We are going to verify this.
We have to solve the system

Nv(x) = NKxA =
(
−1 1
1 −1

)(
k1x1

k2x1

)
≥ 0. (21)

Where ki and xi are the rate constants of reaction ri and the concentration of
the molecule xi for i = 1, 2, respectively. Then, Nv(x) ≥ 0 iff x1 = k2

k1
x1. The

later equation has solution for all strictly positive rate constants k = (k1, k2),
thus we conclude M is feasible.
Example 2 Let M = {s1, s2} and R = {s1 + s2 → 2s2, s1 + s2 → 2s1}. Then
we have

A =
(

1 1
1 1

)
, N =

(
−1 1
1 −1

)
.

Note that

Im(A) = {(v1, v2) ∈ R2 : v1 = v2} = Ker>0
≥0(N) (22)

⇒
Im(A)− logβ(Ker>0

≥0(N)) = {(v1, v2) ∈ R2
>0 : v1 = v2} (23)

⇒
Rn \ (Im(A)− logβ(Ker>0

≥0(N))) 6= ∅. (24)

Thus, for this example M is unfeasible. Now we are going to verify that M is
not feasible with respect to all rate constants k for which k1 6= k2. We have to
solve the system

Nv(x) = NKxA =
(
−1 1
1 −1

)(
k1x1x2

k2x1x2

)
≥ 0. (25)

Where ki and xi are the rate constants of reaction ri and the concentration of
the molecules xi for i = 1, 2, respectively. Then, Nv(x) ≥ 0 is solvable if and
only if k1x1x2 = k2x1x2,i.e. k1 = k2. Thus, M is unfeasible, because M is not
feasible with respect to any rate constant vector k ∈ R2

≥0. M is feasible only
with respect to rate constant vectors k = (k1, k2) which fulfills k1 = k2.



Remark 5. Note that in Examples 1 and 2 it is obtained the same stoichiometric
matrix from the reactions which defines the system. But in Example 1 the or-
ganization {s1, s2} is feasible and in Example 2 the organization {s1, s2} is not
feasible. Then we conclude that feasibility is a phenomena which is beyond the
stoichiometric information.

Example 3 In this example it is shown a way to build unfeasible orga-
nizations. We will use a reaction network of four molecular species and four
reactions, but the method we are going to exemplify could be done for any set
of molecules and reactions. Let M = {s1, s2, s3, s4} and xi the concentration
of species si for i = 1, ..., 4. We are going to build R such that M would be
an unfeasible organization. First we are going to choose Ker>0

≥0(N) such that
logβ(Ker>0

≥0(N)) $ Rn (In other case M would be feasible without necessity of
knowing A). For simplicity we choose

Ker>0
≥0(N) = {(v, v, v, v) : v > 0}.

Now we are going to choose the support of the reactions:

v(x) = (k1x1x2,

k2x1x3,

k3x3x4,

k4x4x2).

(26)

Note there are two shared species between every triad of reactions, this would
help to obtain the unfeasibility. As we already know Ker>0

≥0(N), we can choose
some relation between the rate constants in order to obtain contradictory con-
centration equations for every vector in Ker>0

≥0(N) fulfilling mass-action kinetics
(Equation 4). Note that to every flux vector which verifies the self-maintenance
property of M has to hold that k1x1x2 = k2x1x3 = k3x3x4 = k4x4x2. We are
going to prove that if k1 > k2 and k3 > k4 the organization is unfeasible with
respect to k. By the first and second reactions we have k1x1x2 = k2x1x3. As
k1 > k2 we have

x3 > x2. (27)

By third and fourth reaction we have k3x3x4 = k4x4x2. As k3 > k4 we have

x2 > x3. (28)

We have a contradiction. Note that if we would choose k1 < k2 and k3 < k4

we would obtain also a contradiction. Now we just have to build up the stoi-
chiometric matrix by choosing the produced species of each reaction, in order to
keep Ker>0

≥0(N) as it was stated at the beginning of the example. Choosing the
reactions:

s1 + s2 → 2s1,
s1 + s3 → 2s2,
s3 + s4 → 2s3,
s2 + s4 → 2s4,

(29)



where species si has concentration xi for i = 1, ..., 4, the network defined in (29)
keeps Ker>0

≥0(N) as it was stated at the beginning of this example, then the
organization {s1, s2, s3, s4} is unfeasible. Theorem 2 confirms this.

Remark 6. It is interesting that in Example 2 both reactions have the same
support. Example 3 shows that even if all reactions have different supports, the
organization can be unfeasible.

Remark 7. In Example 3, note that if we would have choosen Ker>0
≥0(N) =

{(v1, v2, v3, v4) : v1 ≥ v2 ≥ v3 ≥ v4} and the same support for the reactions,
it would be obtained the same contradictions stated in Equations 27 and 28
when k1 > k2 and k3 > k4. In the opposite case, if we would have choosen
Ker>0

≥0(N) = {(v1, v2, v3, v4) : v1 ≤ v2 ≤ v3 ≤ v4} it would be obtained the
contradictions when k1 < k2 and k3 < k4. In both cases mentioned above, the
stoichiometric matrix which keeps Ker>0

≥0(N) would look quite different to the
stoichiometric matrix of Example 3.

Remark 8. The contradiction which we found between Equations 27 and 28 can
be thought as a game where given Ker>0

≥0(N), it has to be chosen the support
of the reactions and the relation between rate constants to obtain a system of
Equations Nv ≥ 0 with no solution.

The unfeasible organizations shown in the previous examples were composed
by non-reactive organizations, this means any organization which is (strictly)
contained in the unfeasible organization mentioned in every previous example
verifies its self-maintenance by an empty flux vector.

Definition 8. An organization is non-reactive if its self-maintainance is verified
by an empty flux vector.

From the point of view of combining organizations, what is shown in the previous
examples is that combining non-reactive (trivially feasible) organizations it is
possible to obtain an unfeasible organization. An interesting question is that if
it is possible the emergence of an unfeasible organization from combining feasible
and reactive organizations. The next example shows the positive answer to that
question.
Example 4 In this example we are going to show that unfeasibility can be also
generated by incompatibility between reactive organizations.

Let O8 = {s1, s2, s3}, O7 = {s1, s2, s4},M = O8∪O7 andR = {r1, r2, r3, r4},
where

r1 = s1 + s3 → 2s3,
r2 = s2 + s3 → s1 + s2,

r3 = ss + s4 → 2s4,
r4 = s1 + s4 → s1 + s2.

Let xi the concentration of si and ki the rate constants of ri for i = 1, ..., 4. Note
that O8 and O7 are both feasible (and reactive) organizations, but together they



form M which is an unfeasible organization. This is because under k1 < k2 and
k3 > k4 (or k1 > k2 and k3 < k4) the flux vector which verifies the self main-
tainance of M has to hold x1 > x2 and x2 > x1 simultaneously1.
For the results of simulations of this example see Figure 1 and Figure 2 (Left).

Fig. 1. Evolution of the concentrations in mass-action kinetics. The concentration of
s1, s2, s3, s4 are grey, grey-dashed, black and black-dashed respectively. Figures a) and
b) shows the evolution in time beggining from an instance of the organization O8 for
two different sets of rate constants. Thus, despite changing the rate constants, the
evolution of O8 in a) and b) is structurally the same, asymptotic convergence to a
fixed point corresponding to O8, i.e. all species are persistent. This is possible since
O8 is feasible. Beginning from O7 we obtain the same behavior (not shown in the
figures) because of its feasibility. Figures c),d),e) show the evolution of concentrations
beginning from an instance ofM for three different sets of rate constants, such thatM
is unfeasible with respect to the rate constants chosen for Figures c) and d) and feasible
with respect to the rate constants chosen for e). The system asymptotically tends to
the reactive organization O7 (Figure c)), the non-reactive organization O5 ≡ {s3, s4}
(Figure d)) orM (Figure e)). Non-persistence ofM in cases c) and d) is predicted by
the unfeasibility of M. The situation is illustrated within the lattice of organizations
in Figure 2 (Left).

Example 5 In this example we show how feasibility and membranes are comple-
mentary concepts to understand the asymptotic behaviour in biological systems.

We are going to define a P system of two membranes, one internal and the
other external, such that there are an inner and an outer compartment. Both
compartments have the same reaction rules (we are going to use the reactions
of Example 4), and we are going to allow exchange of molecules through the

1 To verify this it is required to build Ker>0
≥0(N) and check that under those rate

constants no flux vector can follow mass-action kinetics and simultaneously verify
the self-maintainance property.



Fig. 2. Left: Lattice of organizations of Example 4. Each rectangle stands for an orga-
nization. There is a thin line between two organizations of different sizes iff the smaller
organization is a subset of the bigger one and no other organization is between them.
The arrows denote the (down-)movement in time from the unfeasible organization O9

to the feasible organization O8 (cf. Fig. 1 (c)), and to the non-reactive organization O5

(cf. Fig. 1 (d)). Right: Diagram of the P system of Example 5. There are two compart-
ments each surrounded by a membrane. The membranes allows exchange-diffusion of
molecules between compartments. Within each compartment the reaction rules are the
same. But due to different initial conditions, different rate constants (for the same set
of reactions) in each compartment, the species concentrations can differ and different
organizations can appear in each compartment.

internal membrane (from the inner to outer compartment and vice versa). See
Figure 2 (Right) for an illustration.

We allow that reactions are fired with different rate constants in the inner
and outer compartment (this assumption is theoretically plausible for example in
charged membranes). This fact makes possible the coexistence of the two incom-
patible organizations O7 and O8 of Example 4 (one organization in each com-
partment), and thus when considering the P system as a whole, we have that the
organization O9 increases its rates-region of feasibility because of the exchange
reactions . Furthermore, for some exchange rates the resulting behaviour is an
asymptotic stability of O9 in each compartment, but in an oscillatory regime (if
the membrane is destroyed this equilibrium is broken). Finally, for certain ex-
change rates, the asymptotic behavior of a feasible and reactive organization is
a non-reactive organization, this implies that the creation/destruction of mem-
branes can also break the stability of feasible organizations. See Figure 3 for
simlations showing these phenomena.

5 Conclusions

We have shown that, given a kinetic law of mass-action type, feasibility can be
computed for each organization, i.e. whether it has a corresponding fixed point
in the ODE (Eq. 1) or not. This complements the fixed point theorem (Theo-
rem 1 in [4]) and refines the information organization theory can give about a
systems dynamics. We presented an intuitive way to build unfeasible organiza-



Fig. 3. In all plots the grey, grey-dashed, black, black-dashed curve represents the
concentration of s1, s2, s3, s4 respectively. In rows a), b) and c) the left plot shows
the concentration of molecules in the inner compartment, the middle plot shows the
concentration of the outer compartment and the right plot shows the sum of inner and
outer concentrations (the total concentration in the P system considered as a whole).
The plots in row a) shows the P system when the exchange rate constants are switched
to zero (compartments do not interact each other). We see that the inner compartment
tends to O7 and outer compartment to O8, and thus the P system considered as a whole
tends to O9. The plots in row b) show the same system as in row a), but permitting
exchange of molecules through the membranes. It is observed an oscillatory regime
in which O9 is maintained in both compartments, because the exchanged molecules
support the long-term stability of the system. This oscillatory regime is not possible in
a single membrane system. The plots in row c) shows again the same system as in a)
but with different exchange-rate constants. This time the exchange reactions lead in
asymptotic regime to the non-reactive organization O6.

tions (cf. Example 3). We have shown that the unfeasibility can emerge from
combining reactive as well as non-reactive feasible organizations. This means
the phenomena of unfeasibility is potentially present in any reaction network.
Thus, terms like feasibility or incompatibility of organizations can give rise to
formalizations of various ecological-like phenomena in nature, e.g., competition,
symbiosis, depredation, etc. (cf. Example 2, 4 and 5). We succesfully applied
chemical organization theory to P systems: We have shown that in a P system
creation and destruction of membranes allow for the occurrence of unfeasible
organizations as well as destruction of feasible organizations, thus enriching the
set of possible behaviors of a chemical reaction system.

The interface of COT and P systems provides a wide field for further re-
search promising new analysis techniques for reaction networks. E.g., the con-
cept of compatibility of organizations informally introduced in this paper could
be further developed and applied to the above mentioned ecological-like con-
cepts. Future work should also be concerned with the relation between different



kinetic laws and feasibility of organizations. Furthermore it should be analyzed
how complicated it is to determine feasibility automatically since methods from
linear algebra do not suffice.
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