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Abstract. MP systems are a class of P systems introduced for modeling metabolic
processes. Here we apply an algorithm, we call Log-Gain Stoichiometric Step-
wise Regression (LGSS), to Golbeter’s oscillator. In general, LGSS derives MP
models from the time series of observed dynamics. In the case of Golbeter’s os-
cillator, we found that by considering different values of the resolution time τ ,
different analytical forms of regulation maps were appropriate. By means of a
suitable MATLAB implementation of LGSS, we automatically generated 700 MP
models (τ varying from 10−3 min to 700 · 10−3 min with increments of 10−3

min). Many of these models exhibit a good approximation, and have second de-
gree polynomials as regulation maps. These results provide an experimental evi-
dence of LGSS adequacy.

1 Introduction

Any living organism has to maintain processes which: i) introduce matter of some kinds
from the external environment, ii) transform internal matter by changing the molecule
distribution of a number of biochemical species (substances, metabolites), and iii) expel
matter that is not useful or dangerous to the organism. The molecule distribution iden-
tifies the metabolic state of the system in question, and can be represented as a multiset
over a set of molecular species A,B, . . . , Z.

An important problem of systems biology is the mathematical definition of a dy-
namical system that explains the observed dynamics of a phenomenon under investiga-
tion, by taking into account what is already known about the phenomenon. When this
is possible, then we can hope that a greater knowledge of the phenomenon is gained.

An important line of research of biological modeling is aimed at defining new
classes of discrete models avoiding some limitations of classical continuous models
based on ordinary differential equations (ODE). In fact, very often, the evaluation of the
kinetic reaction rates in differential models is problematic because it may require mea-
surements hardly accessible in living organisms. Moreover, these measurements dra-
matically alter the context of the investigated processes. In contrast to ODEs, Metabolic
P systems (MP systems) [11, 9, 8, 10], based on Păun’s P systems [14], were introduced
for modeling metabolic systems by means of suitable multiset rewriting grammars.

In MP systems no single instantaneous kinetic is addressed, but rather the variation
of the whole system under investigation is considered, at discrete time points, separated



by a specified macroscopic interval τ . The dynamics is given along a sequence of steps
and, at each step, it is governed by partitioning the matter among reactions which trans-
form it. The log-gain theory of MP systems [8] is aimed at reconstructing the flux reg-
ulation maps associated to the metabolic transformations. Metabolic P systems proved
to be promising in many contexts and their applicability was tested in many situations
where differential models are prohibitive due to the unavailability or the unreliability of
the kinetic rates [10, 12].

Here we apply an algorithm, we call Log-Gain Stoichiometric Stepwise Regression
(LGSS), to Golbeter’s oscillator given in Table 1 [3, 4, 5]. In this manner, we generate
automatically 700 models of this oscillator, which, for the most part, provide the same
order of approximation of Golbeter’s model. Moreover, by considering the phenomenon
at different time grains, we obtain different models and in many cases the analytical
form of these models is simpler than Golbeter’s model.

The fundamental mechanism of mitotic oscillations concerns the periodic change
in the activation state of a protein produced by the cdc2 gene in fission yeast or by
homologous genes in other eukaryotes. The simplest form of this mechanism is found
in early amphibian embryos (see [5] at page 24). Here (see the picture in the left part of
Table 1) cyclin (C) is synthesized at a constant rate and triggers the transformation of
inactive (M+) into active (M ) cdc2 protein, which leads to the formation of a complex
known as M-phase promoting factor (MPF). MPF triggers mitosis, but at the same time
M elicits the activation of a protease from state X+ to X . The active protease then
degrades cyclin resulting in the inactivation of cdc2. This brings the cell back to initial
conditions and a new division cycle can take place. The ODE presented in the right part
of Table 1 is the differential model of dynamics described in Figure 1, where C,M,X
are the concentrations of C,M,X respectively and 1−M, 1−X are the concentrations
of M+, X+ respectively (the definitions of the parameters of the ODE model of table 1
are not simple and are not relevant for our further discussion, however they can be found
in [3]).
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Table 1. Goldbeter’s oscillator, which has a cycle of about 25 min [3].



Fig. 1. A numerical solution of the set of differential equations (right part of Table 1) comprising
the model introduced by A. Goldbeter (figure taken from [3]).

2 MP systems

Metabolic P systems, or P metabolic systems, represent metabolic processes in a dis-
crete mathematical framework. The letter P of MP systems comes from the theoretical
framework of P systems introduced by Gheorghe Păun [14] in the context of membrane
computing. In fact MP systems are a special class of P systems introduced in 2004 [11]
to express metabolism in a discrete mathematical setting.

A metabolic P system is essentially a multiset grammar where multiset transforma-
tions are regulated by functions. Namely, a multiset rule like A+B → C means that a
number u of molecules of kind A and the same number u of molecules B are replaced
by u molecules of type C. The value of u is the flux of the rule application. Assume to
consider a system at some time steps 0, 1, 2, . . . , t, and consider a substance x that is
produced by rules r1, r3 and is consumed by rule r2. If u1[i], u2[i], u3[i] are the fluxes
of the rules r1, r2, r3 respectively, in the passage from step i to step i + 1, then the
variation of substance x is given by:

x[i+ 1]− x[i] = u1[i]− u2[i] + u3[i] (1)

In a MP system it is assumed that in any state the flux of each rule is provided by
a function, called regulator of the reaction. Substances, reactions, and regulators (plus
parameters which are variables different from substances occurring as arguments of
regulators) specify a discrete dynamics at steps indexed in the set N of natural numbers.
Moreover, a temporal interval τ , a conventional mole size ν, and substances masses are
considered, which specify the time and population (discrete) granularities respectively.
They are scale factors that do not enter directly in the definition of the dynamics of a
system, but are essential for interpreting it at a specific physical level of mass and time
granularity.



From a mathematical point of view, a MP system M of type (n,m, k), that is, of
n substances, m reactions and k parameters (this type will be implicitly assumed), is
specified as follows (see also [10]):

Definition 1 (MP system). A MP system is a discrete dynamical system specified by a
construct

M = (S,R,H,Φ, τ, ν, µ)

where S,R are finite disjoint sets, and the following conditions hold, with n,m, k ∈ N:

– S is a set of n substances (the types of molecules) determining, for any metabolic
state of the system, a vector X of substance quantities which varies on Rn;

– R is a set of m reactions specified by m pairs (r−1 , r
+
1 ), . . . , (r−m, r

+
m) ∈ Nn ×Nn,

composed by the left and right vectors of the reactions (relative to the reactants and
to the products respectively). The matrix A = (r#1 , . . . , r

#
m) is the stoichiometric

matrix associated to the reactions having as columns the stoichiometry balances of
the rules;

– H : N → Rk is a function providing, at each step i ∈ N, the vector H[i] of
parameters;

– Φ = (ϕ1, . . . , ϕm) is a vector of regulators (or flux regulation functions), where
Φ : Rn × Rk → Rm provides the fluxes of reactions corresponding to any global
state of the system, that is, a pair in Rn×Rk constituted by the metabolic state and
by the parameter vector. Given a reaction r, the substances and the parameters
which occur as arguments of the corresponding regulator ϕr are called the tuners
of the reaction r.

– τ ∈ R is the time interval between two consecutive steps;
– ν ∈ R is the number of molecules which gives a (conventional) mole in the model;
– µ ∈ Rn is the vector of the mole masses of substances.

Given a vector X[0] ∈ Rn relative to an initial state of a given system, the dynamics of
M is specified by the following vector recurrent equation, called EMA[i] (Equational
Metabolic Algorithm), where × is the usual matrix product, and, in dependence on the
context, + is the usual sum or the component-wise vector sum:

X[i+ 1] = A× U [i] +X[i] (2)

providing the state of the system X[i + 1], for each step i ∈ N, by means of the vector
of fluxes U [i] = (ur[i] | r ∈ R) where ur[i] = ϕr(a[i], b[i], . . .) and a[i], b[i], . . . are
components of X[i], H[i] which are the tuners of reaction r.

A MP system is completely described by a MP grammar where multiset rewriting
rules (reactions) are given with the corresponding regulators (plus parameter evolution
functions and scale factors for a complete specification of the system). A MP grammar
can be also specified by a MP graph where the relationships between reactions and
regulators appear in a more direct way. An example of MP graph, which represents the
Golbeters oscillator [3], is given in Figure 2.

A Java software, called MetaPlab, was developed starting from a prototypal version.
MetaPlab is downloadable from the official site of MetaPlab software1. This platform

1 http://mplab.scienze.univr.it.



Fig. 2. A MP graph. Nodes: triangles represent matter introduction and expulsion, circles
C,M,Mp,X,Xp stand for substances, circles R1, R2, . . . , R7 for reactions, rounded corner
rectangles for regulators, and rectangles for parameters. Edges: transformation edges go from
substances to reactions (consumption) and from reactions to substances (production), regula-
tion edges go from regulators to reactions, and influence edges go from substance or parameters
(tuners) to regulators.

enables the user to design MP models by means of some useful graphical tools, to
simulate their dynamics, and to automatise some procedures which can help the user
to develop new models. MetaPlab is based on an extensible set of plugins, namely Java
tools, for solving specific tasks relevant in the framework of MP systems. A guide for
this software is available at the official site of MetaPlab software.

2.1 The log-gain principle of MP Systems

The log-gain principle was introduced in MP systems theory for solving the follow-
ing inverse dynamic problem [8, 10]. Given a time series (X[i], H[i]) ∈ Rn+k (for
i = 0, 1, 2, . . . t) of some consecutive states and parameters of a metabolic system
(at a time interval τ ), is it possible to deduce a corresponding time series of vectors
U [i] ∈ Rm which put in the equation (2) provide the time series of substance quanti-
ties? This is the dynamical problem of reaction flux discovery. The deduction of time
series U [i] is related to the time granularity τ of the systemic logic governing the mat-
ter transformations of the observed metabolic states. When vectors U [i] are known, the
discovery of maps Φ which provide U [i], in correspondence to the vectors (X[i], H[i]),



is a typical problem of approximation which can be solved with standard techniques of
mathematical regression.

An important remark is due in this context. The approach of flux discovery is es-
sentially observational, macroscopic, and global, in a sense which is opposite to the
perspective of differential models, which is infinitesimal, and local. In fact, we do not
intend to discover the real kinetics responsible for the biochemical dynamics of each
reaction, but we only try to capture the global pattern of reaction ratios of an observed
dynamics. In other words, leaving unknown the real local internal dynamics, we decide
to consider the system at an abstraction level which is sufficient to reveal the logic of the
behavior we observe. This more abstract approach can be less informative, with respect
to specific important details, but such a more generic information could be very useful
in discriminating important aspects of the reality, and often, especially in the case of
very complex systems, is the only way for grasping a kind of comprehension of the
reality under investigation.

We call the system (2) ADA (Avogadro and Dalton Action), when we search to de-
termine U [i] from the knowledge of substance quantities (Avogadro refers to the integer
stoichiometric coefficients, and Dalton to the summation of the effects of reactions).
The log-gain principle assists us by adding new knowledge to the stoichiometric infor-
mation of ADA equations. This principle derives from a general biological principle
called allometry [1], according to which, in a living organism, the global variation of
its typical variables are proportional to the relative variations of the variables related to
them. In differential terms the relative variation in time of a variable coincides with the
variation of its logarithm, therefore we used the term “log-gain” for any law grounded
on this assumption. In the specific context of our problem, we assume that the relative
variation of a reaction flux is a linear combination of the relative variations of sub-
stance quantities and parameters affecting the reaction. We refer to the papers [8, 10]
for a detailed account on the log-gain theory of MP systems.

The Log-Gain Stoichiometric Stepwise regression algorithm (LGSS), presented and
motivated in [13], combines and extends the log-gain principle with the classical method
of Stepwise Regression [6, 2], which is a statistical regression technique based on Least
Square Approximation [7, 12] and a Fisher test F. In fact stepwise regression tries to
find the best combination of some prefixed basic functions for approximating a given
time series. In LGSS we add the specific knowledge of the stoichiometry of the system
under investigation and the requirement that the log-gain principle has to be satisfied
in the best possible way. We do not give here the details of the algorithm, which was
implemented by suitable MATLAB functions, but it turned definitively out that the ad-
dition of these two aspects, related to the particular nature of metabolism, provided an
effective improvement of the approximation performance of stepwise regression.

3 Statistical distribution of mitotic MP models

In general, LGSS derives MP models from the time series of observed dynamics. In the
case of Golbeter’s oscillator [3, 4, 5] we found that by considering different values of
the resolution time τ , different analytical forms of regulation maps were appropriate.
By means of a suitable MATLAB implementation of LGSS, we automatically generated



Fig. 3. Correlation indices of the three substances for each model w. r. t. the values of resolution
time τ (on the top). Root mean square errors (RMSE) of the three substances for each model w.
r. t. the values of resolution time τ (on the bottom).

700 MP models (τ varying from 10−3 min to 700 · 10−3 min with increments of 10−3

min). Figure 3 displays Pearson’s correlation indices [16] and root mean square errors
(RMSE) for each of these models. Each model provides an RMSE with magnitude order
at most equal to 10−2 and permits the calculation of values which are highly correlated
to the observed one.

The regulation maps calculated by the LGSS are obtained starting from a dictionary
of 20 possible regressors, that is monomials of C, M and X with degree less than or
equal to 3 (i.e. the constant, C, M , X , C2, M2, X2, CM , CX , MX , C3, M3, X3,
C2M , CM2, C2X , CX2, M2X , MX2 and CMX)2. Figure 4 displays two diagrams
giving the number of regressors and the total number of monomials occurring in all the
regulation maps of each MP model. We need at least 6 different regressors to get a good
MP model while we need at least 18 monomials to define all the regulation maps that
comprise a model.

2 Substances M+ and X+ are not considered because they depend on M and X respectively.



Fig. 4. Number of different regressors for each model w. r. t. the values of resolution time τ (on
the top). Total number of monomials for each model w. r. t. the values of resolution time τ (on
the bottom).

4 Model classification according to descriptional parameters

Given a MP grammar, providing the dynamics of a MP model, we can abstract from
the particular values of the constants of regressors by identifying a MP grammati-
cal schemata defined in terms only of the analytical form of regressors constituting
each regulation map. In this section we present the distribution of these grammatical
schemata over the population of mitotic models. We found that all the 700 models are
distributed into 40 different grammatical schemata. If we order these schemata accord-
ing to the number of models where they occur we find the distribution given in Figure 5.
For example the grammatical schemata at the 10th position has 26 models. In Table 2
other descriptional indices of models are given for the first 14 grammatical schemata
which define 621 models from a total of 700 (89%). These indices are useful for dis-
criminating interesting aspects of the MP grammars and they comprehend:

1. the number of regressors;
2. the total number of monomials;
3. the temporal grain of dynamics observation which is expressed by the values of

time interval τ ;



4. the best value of τ which is relative to the model which provides the best dynamical
approximation of the mitotic phenomenon;

5. the best RMSE which is the average value of the RMSE relative to the substances
curves corresponding to the best τ .

It is worthwhile to remark that the grammatical schemata occurring at the first posi-
tions (with high frequency) are also the grammatical schemata having a small number
of regressors and monomials.

Fig. 5. Number of MP models w. r. t. grammatical schemata (please see Table 2 for details).

Grammatical number of number of total n. of τ interval best τ best
schemata models regressors monomials (10−3 min) (10−3 min) RMSE

1 135 6 16 151 – 345 315 1.61 · 10−2

2 128 6 17 343 – 477 401 1.62 · 10−2

3 49 6 17 43 – 93 43 1.84 · 10−2

4 46 6 16 138 – 232 219 1.95 · 10−2

5 44 8 24 1 – 71 40 1.48 · 10−2

6 38 6 16 525 – 699 683 1.78 · 10−2

7 33 6 16 473 – 563 556 1.79 · 10−2

8 32 5 15 514 – 694 602 2.78 · 10−2

9 28 7 16 570 – 696 671 1.09 · 10−2

10 26 6 16 493 – 684 684 1.8 · 10−2

11 20 8 23 118 – 137 137 5.86 · 10−2

12 15 9 25 103 – 117 103 9.6 · 10−3

13 15 6 17 474 – 499 474 1.62 · 10−2

14 12 7 21 191 – 212 212 1.97 · 10−2

Table 2. Descriptional indices of models given for the first 14 grammatical schemata ordered as
explained in section 4.



4.1 Analytical forms of mitotic MP grammars

In this section we will present a number of MP models where regulation maps present
very simple and nice forms especially in comparison with the analytical form of Gold-
beter’s model of Table 1. They were chosen according to some criteria of representa-
tiveness that are based on the classification analysis developed in the previous section.

Tables 3 and 4 give the best two MP mitotic oscillators whose grammars belong to
the first two grammatical schemata presented in Table 2. Tables 5 and 6 give the two
simpler MP grammars which define a mitotic oscillator: the first one uses the minimum
number of different regressors (only 5: the constant, C, M , X and CM ) while the
second one uses the minimum (total) number of monomials (only 14 monomials).

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 C + k3 M + k4 X − k5 C
2 − k6 CM

r3 : M+ →M ϕ3 = k7 + k8 CM
r4 : M →M+ ϕ4 = k9 M + k10 X
r5 : X+ → X ϕ5 = k11 C + k12 M
r6 : X → X+ ϕ6 = k13 + k14 X + k15 C

2 + k16 CM

Table 3. The best MP mitotic oscillator whose MP grammar belongs to the grammatical schemata
1 of Table 2 (τ = 315 · 10−3 min, RMSE ≈ 1.61 · 10−2). Constants and initial values: vi =
0.025, k1 = 0.0158, k2 = 0.0168923, k3 = 0.0428226, k4 = 0.054506, k5 = 0.03327,
k6 = 0.0485192, k7 = 0.00245843, k8 = 0.540636, k9 = 0.219284, k10 = 0.14129, k11 =
0.308615, k12 = 1.01307, k13 = 0.0338141, k14 = 0.468994, k15 = 0.756053, k16 =
1.15991, C[0] = M [0] = X[0] = 0.01, M+[0] = X+[0] = 0.99.



r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 C + k3 M + k4 X − k5 C
2 − k6 CM

r3 : M+ →M ϕ3 = k7 C + k8 CM
r4 : M →M+ ϕ4 = k9 + k10 M + k11 X
r5 : X+ → X ϕ5 = k12 C + k13 M
r6 : X → X+ ϕ6 = k14 + k15 X + k16 C

2 + k17 CM

Table 4. The best MP mitotic oscillator whose MP grammar belongs to the grammatical schemata
2 of Table 2 (τ = 401·10−3 min,RMSE ≈ 1.62·10−2). Constants and initial values: vi = 0.025,
k1 = 0.0129, k2 = 0.0255671, k3 = 0.0666719, k4 = 0.0632731, k5 = 0.0522867,
k6 = 0.0749538, k7 = 0.02125, k8 = 0.836282, k9 = 0.00202831, k10 = 0.385222,
k11 = 0.14451, k12 = 0.392585, k13 = 1.2218, k14 = 0.0346891, k15 = 0.586917,
k16 = 0.962714, k17 = 1.35871, C[0] = M [0] = X[0] = 0.01, M+[0] = X+[0] = 0.99.

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 M + k3 X − k4 C − k5 CM
r3 : M+ →M ϕ3 = k6 C + k7 CM
r4 : M →M+ ϕ4 = k8 + k9 M + k10 X
r5 : X+ → X ϕ5 = k11 + k12 M
r6 : X → X+ ϕ6 = k13 C + k14 X + k15 CM

Table 5. The MP mitotic oscillator with the minimum number of different regressors (τ = 602 ·
10−3 min, RMSE ≈ 2.78 · 10−2). Constants and initial values: vi = 0.025, k1 = 0.0123,
k2 = 0.116301, k3 = 0.0922507, k4 = 0.00704311, k5 = 0.148285, k6 = 0.0596357,
k7 = 1.78159, k8 = 0.0162002, k9 = 0.922378, k10 = 0.119154, k11 = 0.0388314, k12 =
1.38018, k13 = 0.173718, k14 = 0.634806, k15 = 1.69501, C[0] = M [0] = X[0] = 0.01,
M+[0] = X+[0] = 0.99.



r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 M + k3 X − k4 CM
r3 : M+ →M ϕ3 = k5 + k6 CM
r4 : M →M+ ϕ4 = k7 M + k8 X
r5 : X+ → X ϕ5 = k9 C + k10 M
r6 : X → X+ ϕ6 = k11 + k12 X + k13 C

2 + k14 CM

Table 6. The MP mitotic oscillator with the minimum total number of monomials (τ = 173 ·
10−3 min, RMSE ≈ 2.67 · 10−2). Constants and initial values: vi = 0.025, k1 = 0.0209,
k2 = 0.0149329, k3 = 0.0351323, k4 = 0.0200062, k5 = 0.000662743, k6 = 0.215816,
k7 = 0.0696881, k8 = 0.0911799, k9 = 0.166106, k10 = 0.569463, k11 = 0.00823672,
k12 = 0.252676, k13 = 0.404647, k14 = 0.668527, C[0] = M [0] = X[0] = 0.01, M+[0] =
X+[0] = 0.99.

5 Conclusions

In this paper, by using Golbeter’s oscillator as a case study, we show that metabolic P
systems yield a robust method for biological modeling. The method we used can be ap-
plied without any knowledge about reaction rate kinetics, and can provide, with respect
to differential models, different and even simpler mathematical formulations. This pos-
sibility is strictly related to the chosen time scale of observed dynamics, and seems to
be a promising perspective towards multi-scale modeling, which is a challenging aspect
in systems biology.

In [13] we develop a systematic analysis and a generalization of the algorithm of
Log-Gain Stoichiometric Stepwise Regression (LGSS) on which our results are based.
It combines the equational formulation of MP dynamics with the log-gain principle and
with the classical statistical regression technique of stepwise regression. This algorithm
represents the most recent solution, in terms of MP systems, of the inverse dynamics
problem, that is, of the identification of (discrete) mathematical models exhibiting an
observed dynamics and satisfying all the constraints imposed by the specific knowledge
about the modeled phenomenon.
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