
Towards modelling of reactive, goal-oriented and

hybrid intelligent agents using P Systems

Petros Kefalas and Ioanna Stamatopoulou

Department of Computer Science, CITY College, Thessaloniki, Greece,
International Faculty of the University of Sheffield

{kefalas, istamatopoulou}@city.academic.gr

Abstract. Intelligent agents are classified into various types depending
on whether they just react to the stimuli they perceive (reactive) or they
develop plans to solve their own goals (proactive or goal-oriented). In
practice, agents are a mixture of two layers since they perform reactive
or proactive tasks depending on what is the most appropriate at a given
time (hybrid agents). Bearing in mind the dynamic organisation of a
multi-agent system consisting of any of the above types, it is only natural
to consider Population P Systems as a suitable candidate for modelling.
In this paper, we describe preliminary work done towards modelling of
MAS which include all types of agents. An initial attempt is made to
tackle certain issues that have to do with the objects and rules that define
each agent operation. Alongside the alternative solutions, we present a
concrete example to demonstrate our findings and raise discussions.

1 Introduction

Intelligent agents are robotic or software entities which can exhibit autonomous,
reactive, proactive and social behaviour [14]. Agents perceive their environment,
react immediately if it is necessary, update their beliefs, revise their strategies,
prioritise their goals and develop plans to achieve them. Multi-agent systems
(MAS) are built upon the social behaviour of individual agents that can com-
municate, collaborate and negotiate in order to achieve their goals. Naturally,
MAS are highly interactive, highly parallel and highly dynamic (change of or-
ganisation, change of roles, change in configuration etc). These dynamics make
MAS specification, modelling and implementation a challenging activity. In our
area of interest, formal modelling is particularly attractive as it raises many is-
sues that cannot be tackled in a straightforward manner and leave many open
challenges.

Intelligent agent architectures can be broadly categorised into reactive, goal-
oriented and hybrid. In reactive agents, intelligent behaviour can be achieved
without explicit symbolic representations or explicit abstract reasoning but it is
an emergent property (e.g. ant colonies). The agents operation is based around
a hierarchy of behaviours which resemble if situation then action rules.

On the other hand, goal-oriented agents and their most known representative
Belief-Desire-Intention (BDI) agents [8], are based on: (a) Beliefs, i.e. the infor-
mation an agent has about the environment, which may be false; (b) Desires,



i.e. the things that the agent would like to see achieved; and (c) Intentions, i.e.
the goals that the agent is committed to. In principle, a BDI agent perceives
its environment and updates its beliefs. Based on the current state of affairs, it
may revise its options and prioritise its goals. Having picked up a current goal,
generates a sequence of actions that achieve the goal and executes this plan.
Finally, in most cases it is necessary for the agents to exhibit both reactive and
proactive behaviour, hence the hybrid model.

Practically, BDI agents are not as complicated as the underlying theory dic-
tates [3]. Desires play a strategic role to problem solving and in highly specialised
agents desires are shrink down to one, the general raison d’etre of the agent.
Plans are not generated but are ready made, residing in a library of plans that
are brought into the play according the current goal. The current goal is the
intention that is picked up for deliberation; if it is directly executable the agent
performs an action; if not, the current intention is replaced by a more analytical
list of new intentions (the plan).

There have been several attempts to formally model individual intelligent
agents as well as MAS structure and change. Most of them were based on state
machines and their variations, but were primarily concerned with simple reactive
agents [2, 4]. Though such methods are adequate for the representation of the
internal state of an agent, problems arose when having to deal with the dynamics
of the structure of a system consisting of multiple agents. As a result other at-
tempts used new computing paradigms, such as membrane computing. Such
methods can efficiently address the aforementioned limitation of state-based
methods (Population P Systems for example are very flexible in representing
the dynamics of a population’s structure), but were primarily concerned with
biologically inspired or biological agents exhibiting emergent behaviour [10]. Fi-
nally, previous work has demonstrated that we can combine the above in order
to take advantage of the complementary characteristics of the aforementioned
formal methods [12]. For a complete review of this work, in terms of rationale
and results, the interested reader is referred to [5].

With this paper, we initialise an effort towards modelling of goal-oriented
agents using a variation of Population P Systems [1]. The following sections
describe the modelling toolkit that should be available in order to formally model
MAS that consists of reactive, goal-oriented or hybrid agents. We discuss the
proposal along side with a MAS case in order to clarify our claims. Finally, we
reach an initial definition of a Population P System suitable for modelling any
type of MAS.

2 A MAS Scenario including goal-oriented agents

Assume a disaster area with civilians injured who are incapable of helping them-
selves in between obstacles and ruins [9]. A number of agents (rescue units or
RU) are equipped with the necessary first aid kit and could provide help to in-
jured civilians, thus temporarily rescuing victims from immediate danger. They
can then broadcast the exact coordinates to the agents in their neighbourhood



and continue their rescue mission. Another set of agents (ambulance vehicles
or AV) are capable of approaching the temporarily rescued civilians and carry
them to a more secure establishment (e.g. emergency room or ER). Of course
various parameters play an important role in this rescue scenario, such as num-
ber of agents, the amount of supplies, the capacity of the ambulances, etc. Also,
one should take into account possible failures of agents as well as non-trivial
interaction and mode of communication.

The development of such MAS would normally involve two kind of agents.
RU would be reactive agents which would function under certain rules obeying
a strict hierarchy such as for example:

if there is an obstacle then avoid obstacle ≻
if injured civilian is detected then

provide first aid to victim and inform nearby agents about location ≻
if empty space then move randomly

Injured civilians could also be modelled as reactive agents. On the other hand,
AV would be goal-oriented agents which need to form plans to satisfy their goals,
i.e. having updated their beliefs on where the victims are located based on in-
coming information and develop a sequence of actions to pick up their victims.
In reality, AV agents should also have a reactive layer on top, which will respond
to immediate threats, such as:

if there is an obstacle then avoid obstacle ≻
if at ER then upload the injured civilians ≻
if load reached the maximum capacity then move towards the ER ≻
if injured civilian is detected and not at ER then pick up victim

The above reactive layer deals with the simple behaviours, apart from moving

towards the victim behaviour which requires planning. This is the main dif-
ference from agent RU that searches the space randomly for locating injured
civilian.

Therefore the requirements for modelling the above is summarised in the
following:

– modelling of individual separate agents of various types is necessary;

– the agent models should be developed with non-trivial data structures and
their accompanying operations;

– there must be a way to code the rules for behaviours within an agent, in-
cluding the communication behaviour;

– it is essential to set up priorities on these behaviours for the agent to perform
the desired overall task;

– describing the change in communication links is desirable according to some
“neighbouring” criteria;

– modelling of agents roles, generation and destruction must be possible in
order to model the dynamic configuration of the system;

– agents in a MAS could operate in parallel exhibiting an asynchronous be-
haviour;



Most of the above naturally lead to considering elements of Tissue P Sys-
tems [7], Populations P Systems [1] and P colonies [6], equipped with some new
features that could make them more focused to the modelling of goal-oriented
and hybrid agents.

3 Formal Modelling of MAS

3.1 Agents as Cells

Each agent can be directly mapped to a cell. Cells are arranged in a graph
(population) rather than a hierarchical tree structure. Cells must have types
each corresponding to a different role of each agent in the MAS. For instance,
in the rescue scenario there are four types of cells, namely a rescue unit (RU),
an ambulance vehicle (AV), the civilian victim (CV) and the emergency room
(ER). The latter could be an agent if it has certain characteristics (e.g. it is a
mobile emergency unit, it can communicate with other agents etc.) or can be
modelled as a simple entity otherwise. Instances of all these cell types make a
MAS configuration. The graph denotes the communication between cells, e.g.
neighbouring RUs and AVs have a direct communication, as well as a CV with
a RU or AV on the same spot, the AV when it reaches the ER, the ERs between
them etc.

3.2 Data Structures and Objects

Objects within cells should be more than multisets of symbols. Practically, more
sets and mathematical structures are needed, such as naturals, reals, atoms, n-
tuples, sequences/lists, sets, etc. as well as all operations applied on these. In
addition, objects should be partitioned in various subsets, in a kind of annotated
values of attributes. The absolutely necessary subsets of objects required for a
goal-oriented agent are: (a) a set of Beliefs, (b) a set of Goals and (d) a set of
internal agent States, and (e) a set of incoming Messages. Thus, for instance:

B = {(victim at X Y ), (er at X Y ), . . .} where X, Y ∈ N ,
G = {(pickup victim X Y ), (move towards X Y ), (leave victim at er) . . .},
States = {doing nothing, rescuing, moving to er, . . .},
IncomingMessage = {(found victim at X Y ), . . .} etc.

These in turn would be used in the list of goals, queue of incoming messages
etc. Depending on the problem, some more sets might be necessary, such as
the current position and direction is space, the capacity of an AV, the current
load, the current supplies, fuel, etc. In practical modelling, we would need some
sort of notation that differentiates objects according to the set they belong, for
example:

B : (victim at 3 8), State : rescuing, Pos : (4 5),
ListOfGoals : 〈(move towards 6 7), (leave victim at er), . . .〉,
IncomingQueue : 〈(found victim at 6 7), (found victim at 9 1), . . .〉, etc.



3.3 Behaviours and Rewrite/Communication Rules

Reactive behaviours can be modelled as a set of transformation rules for a spe-
cific agent type. For example, the rule:

avoid obtacle : (State : moving to er Obstacle : (X Y ) Pos : (X1 Y1)
Direction : D if (next to X Y X1 Y1) →
State : moving to er Obstacle : (X Y ) Pos : (X1 Y1) Direction : D′ where
(random D′))AV

The objects on the left hand side are consumed and replaced by the objects of the
right hand side within a cell of type AV. Checks and new values are performed
and produced through the guards following the if delimiter and operations fol-
lowing the where delimiter. All rules could be identified by a unique identifier at
the far left, in this case avoid obtacle.

Proactive behaviours, such as updating beliefs, adding goals to the list or
executing primitive goals (actions) can be modelled in a similar way.

Similarly, there exist communication rules that are used to pass messages to
cells that are linked through the graph structure. For example, the rule:

send victim position :
(B : (victim at 4 2); incoming message : (found victim at 4 2), broadcast)RU

means that in the presence of an object B : (victim at 4 2) inside a cell of type
RU an object incoming message : (found victim at 4 2) can be obtained by all
neighbouring cells, that is, those connected through links. The receiving agent
can put the incoming message in the queue of incoming messages through a
simple transformation rule. Guards and new values may also be required in the
form of the rules.

Communication rules could also be used for perceiving the environment. For
instance, the rule:

perceive obstacle :
Pos : (X Y ); Obstacle : (X1 Y1) if (within range X Y X1 Y1), perceive)AV

is the same as the above with the exception that object Obstacle : (X1 Y1) is ob-
tained by the environment. The other way round, i.e. an object is can be expelled
out to the environment through an output rule. The performatives broadcast,
perceive and output are equivalent to the commonly used in membrane compu-
ting in, enter and exit.

3.4 Priorities of Behaviours

In order to achieve the correct overall agent behaviour, individual behaviours in-
cluding communication should be ordered. A top level ordering should determine
which type of task behaviour should be tried first and whether communication
(either broadcast or perceive or output) should precede or follow task behaviours.
For example, a possible ordering might be:

broadbast rules � perceive rules ≺ reactive rules ≺
proactive rules � output rules



which implies that incoming message and perceptions should fire first followed
by reactive rules followed by proactive rules and sending out messages.

At a lower level ordering between rules within the same type must exist. For
instance, a possible ordering for the reactive behaviour should be:

avoid obstcle ≺ upload victims ≺ move towards er ≺ pick up victim

It should be noted at this point that imposing such priorities in types of rules,
or rules themselves, in combination to the use of lists for objects may have a
restrictive effect on the maximal parallelism of the P system, which however for
MAS modelling purposes is acceptable.

3.5 Communication Links and Bond Making

The graph connecting the cells is by no means fixed. Depending on the problem,
the notion of “neighbourhood” between cells can be defined. This will allow cells
to communicate directly through the existing links. Establishment of links is
governed by a bond making rule that states the preconditions which must be
true. For example, a bond making rule between an AV and a RU can be:

connect neighboring agents : (AV, Pos : (Xav Yav); Pos : (Xru Yru), RU)
if (neighbours Xav Yav Xru Yru)

meaning that in the presence of neighbouring Pos : (Xav Yav) and Pos :
(Xav Yav) inside two cells of type AV and RU respectively, a bond is created
between the two cells.

3.6 Dynamic Structure and Cell Differentiation/Division/Death

It is often the case that new agents should appear into the system, perhaps some
change role and eventually some will disappear. Such situations can be handled
effectively by cell division, cell differentiation and cell death rules. For instance,
a RU which runs out of fuel is removed from the system:

out of order : (fuel : 0)RU → †

4 Main Proposal

Bearing in mind the above, we propose that MAS consisting of any type of
agents can be modelled using a variation of Population P Systems with Active
Membranes, which can be defined as the construct:
αP = (V, Φ, T, γ, α, wE , A1, A2, . . . , An, Rb, Rs, Ob, Or, Op) where:

– V is a finite set of structures and symbols called objects and V = Beliefs∪
Goals ∪ States ∪ Messages . . . ;

– Φ is a set of default and user-defined operations on items of V ;
– T is a finite alphabet of symbols, which define different types of agents;
– γ = ({1, 2, . . . n}, G), with G ⊆ {{i, j} | 1 ≤ i 6= j ≤ n }, is a finite undirected

graph;



– α is a finite set of bond-making rules;
– wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
– Ai = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ T the type of agent/cell i;
– Rb is a finite set of behavioural rules and Rb = BroadCast ∪ Perceive ∪

Output ∪ Reactive ∪ Proactive.
– Rs is a finite set of structural rules and Rs = Differentiation∪Division∪

Death.
– Ob is a partial order over behaviours Rb

– Or is a partial order over the set of Reactive behaviour rules
– Op is a partial order over the set of Proactive behaviour rules

The form of the rules is not formally defined here but can be fairly directly
implied by the examples stated above.

5 Conclusions and Open Issues

We have made an initial attempt to define a new variation of Population P
Systems with Active Membranes, namely αP , which is suitable for modelling
multi-agent systems including all types of agents, such as reactive, goal-oriented
and hybrid. This is the main difference from previous work, in which we only
dealt with simple biological reactive agents. We demonstrated the need through
an example of a disaster scenario in which agents are trying to rescue civilians
injured. A more concrete and precise definition, including the theoretical BDI
model as well as the detailed computation steps are in our immediate intentions.
Before that, however, we need to identify the other practical issues raised by such
modelling. The main question is whether the constructs of the αP are adequate
to map a MAS (including BDI agents) or there is a need to extend it with new
ones. This will lead us to the design and implementation of a tool that animates
the models, along the lines of previous work done both textually [11] and visually
[13].

References

[1] Bernardini, F. and Gheorghe, M. (2004). Population P Systems. Journal of
Universal Computer Science, 10(5):509–539.

[2] Coakley, S. (2007). Formal Software Architecture for Agent-Based Modelling
in Biology. PhD thesis, Dept. of Comp. Science, Univ. of Sheffield, UK.

[3] Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning.
In Proc. of the 6th Conference on Artificial Intelligence, pages 677–682.

[4] Kefalas, P., Holcombe, M., Eleftherakis, G., and Gheorghe, M. (2003). A
formal method for the development of agent-based systems. In Plekhanova, V.,
editor, Intelligent Agent Software Engineering, pages 68–98. Idea Publishing
Group Co.



[5] Kefalas, P. and Stamatopoulou, I. (2010). Modelling of multi-agent systems:
Experiences with membrane computing and future challenges. In Applications
of Membrane computing, Concurrency and Agent-based modelling in POPu-
lation biology (AMCA-POP), Satellite event of the 11th Conference on Mem-
brane Computing. To appear.

[6] Kelemen, J., Kelemenova, A., and Paun, G. (2004). Preview of P colonies:
A biochemically inspired computing model. In Pollack, J. B., Bedau, M.,
Husbands, P., Ikegami, T., and Watson, R. A., editors, Proceedings of the 9th
Intern. Conference on the Simulation and Synthesis of Living Systems (Alife
IX), pages 82–86. MIT Press.

[7] Martin-Vide, C., Păun, G., Pazos, J., and Rodriguez-Paton, A. (2003). Tissue
P systems. Theoretical Computer Science, 296:295–326.

[8] Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In Allen, J., Fikes, R., and Sandewall, E., editors, Proceedings of
the 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 473–484. Morgan Kaufmann.

[9] Sakellariou, I., Kefalas, P., and Stamatopoulou, I. (2008). Enhancing Net-
Logo to simulate BDI communicating agents. In Artificial Intelligence: The-
ories, Models and Applications, Proceedings of the 5th Hellenic Conference
on AI (SETN’08), volume 5138 of Lecture Notes in Computer Science, pages
263–275. Springer.

[10] Stamatopoulou, I., Gheorghe, M., and Kefalas, P. (2005a). Modelling dy-
namic configuration of biology-inspired multi-agent systems with Communi-
cating X-machines and Population P Systems. In Membrane Computing: 5th
International Workshop, volume 3365 of Lecture Notes in Computer Science,
pages 389–401. Springer-Verlag, Berlin.

[11] Stamatopoulou, I., Kefalas, P., Eleftherakis, G., and Gheorghe, M. (2005b).
A modelling language and tool for Population P Systems. In Proceedings of
the 10th Panhellenic Conference in Informatics (PCI’05).

[12] Stamatopoulou, I., Sakellariou, I., Kefalas, P., and Eleftherakis, G. (2008).
OPERAS for social insects: Formal modelling and prototype simulation.
Special Issue of Romanian Journal of Information Science and Technology
(ROMJIST) on Natural Computing — from biology to computer science and
back to applications, 11(3):267–280.

[13] Wilensky, U. (1999). Netlogo. http://ccl.northwestern.edu/netlogo. Center
for Connected Learning and Computer-based Modelling. Northwestern Uni-
versity, Evanston, IL.

[14] Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115–152.


