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Abstract. This paper presents a method of formally verifying P sys-
tem specifications by first identifying invariants and then checking them,
using the NuSMV model checker, against a Kripke structure represen-
tation. The method is applied to a basic class of P systems with trans-
formation and communication rules using either maximal parallelism or
asynchronous rewriting strategy and for a special variant of P systems
with electrical charges, but without active membranes.
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1 Introduction

P systems, introduced in [19], represent a new computational model inspired
by the structure and functioning of the living cell. In the last ten years there
have been various investigations related to this computational paradigm, ranging
from computability and complexity for different variants of these systems [20] to
various applications and connections with other computational models [4]. In the
last period the research on various programming approaches to P systems ([8],
[22]) and formal semantics ([3], [1], [15]), or with respect to decidability of some
model checking properties [7], has created the basis for investigating different
aspects related to the formal verification and testing of these systems.

The testing has been investigated for some covering criteria ([11], [13]) and
certain formal based approaches [14].

Formal verification has been studied for different variants of P systems by
using rewriting logic and the Maude tool [1] or, for stochastic systems [2], PRISM
and associated probabilistic temporal logic [12].

In this paper we consider an integrated method for formally verifying P sys-
tems. A method for identifying invariants in a formal specification and a tool,
NuSMV, that checks such properties against a Kripke structure representation is



presented. This method is applied for a basic class of P systems, with transforma-
tion and communication rules using either maximal parallelism or asynchronous
rewriting strategy and for a special variant of P systems with electrical charges,
but without active membranes. The invariants are extracted from traces of sim-
ulations of P systems represented in P-Lingua.

2 Basic definitions and preliminary relationships

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of compart-
ments delimited by membranes. Each compartment may contain a finite multiset
of objects and a finite set of rules, as well as a finite set of other compartments.
The rules perform transformation and communication operations. The class of
such models will be called transformation-communication P systems.

Definition 1. A P system is a tuple Π = (V, µ, w1, ..., wn, R1, ..., Rn), where V
is a finite set, called alphabet; µ defines the membrane structure, i.e., the hier-

archical arrangement of n compartments called regions delimited by membranes;
the membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n, rep-

resents the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set

of processing rules applied in region i.

The membrane structure, µ, is denoted by a string of left and right brackets
([, and ]), each with the label of the membrane it points to and describing the
position of this membrane in the hierarchy. The rules in each region have the
form u → (a1, t1)...(am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current compartment, u is replaced by the symbols ai. The symbols ai with
ti = here, remain in the compartment; if ti = out, then they are sent to the
outer compartment or outside the system when the current compartment is the
external one; when ti = in, the symbols are sent into one of the compartments
contained in the current one, arbitrarily chosen. In the following definitions and
examples all the symbols (ai, here) are used as ai. The rules are applied in
maximally parallel mode which means that they are used in all the compartments
at the same time and in each compartment all the objects to which a rule can

be applied it must be the subject of a rule application [19].
A configuration of the P system Π , is a tuple c = (u1, ..., un), where ui ∈

V ∗, is the multiset associated with compartment i, 1 ≤ i ≤ n. A computation

from a configuration c1 to c2 using the maximal parallelism mode is denoted by
c1 =⇒ c2.

A configuration, c = (u1, ..., un), is a terminal configuration if there is no
compartment i such that ui can be further developed.

Another variant of P systems considered in this paper will be the P systems

with electrical charges. This is a simplification of the usual variant occurring in
the literature [21]. Each compartment has a specific electrical charge (+,−, 0)



which can be changed by a communication rule. The set of electrical charges is
denoted by H . The set of rules contains the following types of rules:

– [u → v]hb ;

– u[]h1

b → [v]h2

b ;

– [u]h1

b → v[]h2

b ;

where b indicates a compartment and h, h1, h2 ∈ H. The rules are applied in the
normal way; for more details see [21].

The maximal parallelism can be replaced by other execution strategies. One
of them, called asynchronous execution mode, implies that at each step at least
one rule is executed.

In the sequel we will consider transformation-communication P systems using
maximal parallelism or with asynchronous behaviour or P systems with electrical
charges and maximal parallelism.

2.2 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four

tuple M = (S, H, I, L), where S is a finite set of states; I ⊆ S is a set of initial

states; H ⊆ S×S is a transition relation that must be left-total, that is, for every

state s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H; L : S −→ 2AP is an

interpretation function, that labels each state with the set of atomic propositions

true in that state.

In general, the Kripke structure representation of a system consists of sets
of values associated to the system variables. Assuming that var1, . . . , varn are
the system variables and V ali the set of values for vari, with vali a value from
V ali, 1 ≤ i ≤ n, we can introduce the states of the system as

S = {(val1, . . . , valn) | val1 ∈ V al1, . . . , valn ∈ V aln}.

The set of atomic predicates are given by AP = {(vari = vali) | 1 ≤ i ≤ n, vali ∈
V ali}. Naturally, L will map each state (given by the values of system variables)
onto the corresponding set of atomic propositions.

Additionally, a halt (sink) state is needed when H is not left-total and an
extra atomic proposition, that indicates that the system has reached this state,
is added to AP .

2.3 Linear Temporal Logic (LTL)

The most widely used query languages in model checking are based on Linear

Temporal Logic (LTL) [17,18] and the branching time logic CTL (Computation

Tree Logic) [5]. A superset of these logics is CTL* [9], which combines both
linear-time and branching-time operators. A state formula in CTL* may be
obtained from a path formula by prefixing it with a path quantifier, either A
(for every path) or an E (there exists a path).



In LTL the only path quantifier allowed is A, i.e. we can describe only one
path property per formula and the only state subformulas permitted are atomic
propositions. More precisely, LTL formulas satisfy the following rules [6]:

– If p ∈ AP , then p is a path formula
– If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , fUg and

fRg are path formulas, where:
• The X operator (”neXt time”) requires that a property holds in the next

state of the path.
• The F operator (”eventually” or ”in the future”) is used to assert that

a property will hold at some state on the path.
• Gf (”always” or ”globally”) specifies that a property, f , holds at every

state on the path.
• fUg operator (U means ”until”) holds if there is a state on the path

where g holds, and at every preceding state on the path, f holds. This
operator requires that f has to hold at least until g, which holds at the
current or a future position.

• R (”release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds. However, the first property is not required
to hold eventually: if f never becomes true, g must remain true forever.

2.4 Transformation-communication P systems and Kripke structure

In this section, following the presentation from [14], it is shown how a P system
operating in a maximal parallel manner can be transformed into a Kripke struc-
ture. Then this will be adapted for other types of P systems. We only consider
1-membrane P systems in order to simplify the presentation. The approach pre-
sented below can be generalised for membrane systems with arbitrary number
of compartments.

Consider a 1-membrane P system Π = (V, µ, w, R), where R = {r1, . . . , rm};
each rule ri, 1 ≤ i ≤ m, is of the form ui −→ vi, where ui and vi are multisets
over the alphabet V . In the sequel, we treat the multisets as vectors of non-
negative integers. If k denotes the number of symbols in V and u a multiset of
V , then we will write u ∈ Nk.

The Kripke structure associated to Π utilises two predicates, MaxPar and
Apply (similar to [7]):

MaxPar(u, u1, v1, n1, . . . , um, vm, nm), u ∈ Nk, n1, . . . , nm ∈ N,

Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u, v ∈ Nk, n1, . . . , nm ∈ N.

The first predicate shows that a computation from the configuration u in
maximally parallel mode is obtained by applying the rules r1 : u1 −→ v1, . . . , rm :
um −→ vm, n1, . . . , nm times, respectively, to u; in particular, MaxPar(u, u1, v1,
0, . . . , um, vm, 0) signifies that no rule can be applied and so u is a terminal
configuration.



The predicate Apply denotes that v is obtained from u by applying rules
r1, . . . , rm, n1, . . . , nm times, respectively.

In order to keep the number of configurations finite, we will assume that, for
each configuration u = (u(1), ..., u(k)), each component, u(i), 1 ≤ i ≤ k, cannot
exceed an established upper bound, denoted Max and, in each computation,
each rule can only be applied for at most a given number of times, denoted Sup.

We denote u ≤ Max whenever u(i) ≤ Max for every 1 ≤ i ≤ k and similarly
(n1, . . . , nm) ≤ Sup if ni ≤ Sup for every 1 ≤ i ≤ m; Nk

Max = {u ∈ Nk |
u ≤ Max}, Nm

Sup = {(n1, . . . , nm) ∈ Nm | (n1, . . . , nm) ≤ Sup}. Analogously
to [7], the system is assumed to crash whenever u ≤ Max or (n1, . . . , nm) ≤
Sup does not hold (this is different from the normal termination, which occurs
when u ≤ Max, (n1, . . . , nm) ≤ Sup and no rule can be applied). Under these
conditions, the 1-membrane P system Π can be described by a Kripke structure
MΠ = (S, H, I, L) with S = Nk

Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk
Max,

Halt 6= Crash; I = w and H defined by:

– (u, v) ∈ H , u, v ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm

Sup \ {(0, . . . , 0)} ·
MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

– (u, Halt) ∈ H , u ∈ Nk
Max, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

– (u, Crash) ∈ H , u ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm, v ∈ Nk ·

¬((n1, . . . , nm) ≤ Sup∧v ≤ Max) ∧ MaxPar(u, u1, v1, n1, . . . , um, vm, nm)
∧ Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

– (Halt, Halt) ∈ H ;
– (Crash, Crash) ∈ H .

It can be observed that the relation H is left-total. It is easy to show that for
every u, v ∈ Nk

Max, v is computed from u, in Π , if and only if (u, v) ∈ H , hence
Π and MΠ show the same behaviour.

In the rest of our presentation we will consider a more compact form of the
Kripke structure, MΠ , whereby all the states Nk

Max will be replaced by one
Running state. So, Running state will define a state of normal behaviour as
opposed to the situation described by the other two states, Halt and Crash. In
the first case the system stops in normal circumstances whereas in the case of
the Crash state, the system fails by going beyond some initially set finite limits.

Note that, in this section, the Kripke structure representation of a P system
is given for maximal parallelism. On the other hand, the associated Kripke struc-
ture of a P system can be similarly constructed for other execution modes as
well (e.g. asynchronous rewriting strategy) as illustrated by the examples given
in the next section.

3 Transforming P systems to NuSMV specifications

In this section it is shown how the P systems considered in this paper will be
mapped into the NuSMV model checker by adequately codifying Kripke struc-
tures associated with them in accordance with the principles presented in [14]



and the description made in Section 2.4. Simple examples will illustrate the
presentation.

3.1 Transformation-communication P systems to NuSMV
specifications

The presentation will follow the general principles, introduced in [14], for trans-
lating such P systems into NuSMV. The presentation below will be illustrated by
the following example: Π1 = (V, []1, w1, R1), where V = {a, b, c, d, x, y}, w1 = xy,
R1 = {r1 : x → a, r2 : y → b, r3 : a → xc, r4 : b → ydd}. Please note that the
system will not halt, but this is less significant in this context. A computation
in Π1 has the following steps

xy =⇒ ab =⇒ xcydd =⇒ acbdd =⇒ xccydddd . . . =⇒ xcnyd2n =⇒ acnbd2n . . .

In the NuSMV codification, we will use for each symbol, a, a ∈ V, above, a
variable with the same name to denote the number of occurrences of this symbol
in compartment 1 in the current step. If more than a compartment is considered
then this variable should be indexed by the compartment number. For each rule
ri, we will identify by ni the NuSMV variable that expresses the number of
times ri is applied in the current step in a maximally parallel manner - this is
the value that appears in the MaxPar predicate.

We will describe a computation step in NuSMV by a transition from the
state Running to itself in the Kripke structure associated with Π1, MΠ1

. The
maximal parallelism is expressed by the condition

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b - next(n4) = 0

Additional conditions to characterise the Running state as well as equations to
compute the values of the multisets in the next step are provided below.

state = running & next(state) = running &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next (n3) &

next(d) = d + 2 * next (n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup )

The entire text providing details about the other transitions in the Kripke
structure is available from the Appendix.



3.2 Asynchronous transformation-communication P systems
mapped to NuSMV specifications

We will illustrate the approach using the previous example, Π1, but we will de-
note it by Π2 as it runs in a different way. In the case of asynchronous behaviour
the Kripke structure is slightly different. Although it is still possible to use the
same states, the transitions will be different, as they reflect the asynchronous
behaviour. The above mentioned NuSMV condition expressing maximal paral-
lelism, becomes now

next(n1) + next(n2) + next(n3) + next(n4) > 0

showing that at least one rule is applied. The entire set of conditions for the
Running state as well as equations defining the transition from this state to
itself are listed below.

state = running & next(state) = running &

( next(n1) + next(n2) + next(n3) + next(n4) > 0) &

( 0 <= next(n1) & next(n1) <= x &

0 <= next(n2) & next(n2) <= y &

0 <= next(n3) & next(n3) <= a &

0 <= next(n4) & next(n4) <= b) &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 )&

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup )

3.3 P systems with electrical charges mapped to NuSMV
specifications

In the case of electrical charges the above mentioned Kripke structures associated
with P systems need to be extended to cope with additional conditions required
in this case.

We will consider the following example of a P system with electrical charges
and two compartments. Π3 = (V3, [[]2]1, w1, w2, R), where V3 = {a, b, c, d, x, y},
w1 = xy, w2 = λ, R = {r1 : x[]02 → [a]+2 , r2 : y[]02 → [b]+2 , r3 : [a → xc]+2 , r4 : [b →
ydd]+2 , r5 : [x]+2 → []02x, r6 : [y]+2 → []02y}. The maximal parallelism strategy will
be applied in running the system.

The Kripke structure associated with this example shall codify the behaviour
of the two-compartment P system by using a mapping of the symbols of the
alphabet into compartments.

The main change to the Kripke structure represented in NuSMV for tran-
sformation-communication P systems consists in adding a new set of conditions



to the states of the representation that represents the restrictions imposed by
electrical charges associated with compartments. These constraints allow only
for some rules to be applied. The NuSMV text is listed below for the P system
Π3.

state = running & next(state) = running &

(( charge_2 = 0 & (x_1 > 0 | y_1 > 0 ) &

x_1 - next(n1) = 0 & y_1 - next(n2) = 0 &

next(n3) = 0 & next(n4) = 0 & next(n5) = 0 & next(n6) = 0 ) |

( charge_2 = 1 & (a_2 > 0 | b_2 > 0 ) &

a_2 - next(n3) = 0 & b_2 - next(n4) = 0 &

next(n1) = 0 & next(n2) = 0 & next(n5) = 0 & next(n6) = 0) |

( charge_2 = 1 & (x_2 > 0 | y_2 > 0 ) &

x_2 - next(n5) = 0 & y_2 - next(n6) = 0 &

next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) ) &

next(x_1) = x_1 - next(n1) + next(n5) &

next(y_1) = y_1 - next(n2) + next(n6) &

next(a_2) = a_2 - next(n3) + next(n1) &

next(b_2) = b_2 - next(n4) + next(n2) &

next(c_2) = c_2 + next(n3) &

next(d_2) = d_2 + 2 * next(n4) &

next(x_2) = x_2 - next(n5) + next(n3) &

next(y_2) = y_2 - next(n6) + next(n4) &

! ( next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 &

next(n5) = 0 & next(n6) = 0 ) &

! ( step >= MaxSteps | next(x_1) > Max | next(y_1) > Max |

next(a_2) > Max | next(b_2) > Max | next(c_2) > Max |

next(d_2) > Max | next(x_2) > Max | next(y_2) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup |

next(n4) > Sup )

4 Formal verification using NuSMV

In this section we will show how a P system mapped into NuSMV is verified
for certain properties, by using model checking techniques. The properties that
will be checked are first identified by Daikon, a tool which dynamically detects
program invariants based on execution traces. Following the strategy exposed in
[2], we synthesise the traces from the P-Lingua environment’s execution data[8],
and then run Daikon to generate an extended list of invariants, which help us
formulate the LTL properties. The Daikon tool is even able to detect some
mathematical relationships between various variables of the system, based on
complex mathematical functions, not all of them expressible in NuSMV. Both,
the translation from P-Lingua specification to NuSMV specification and the P-
Lingua traces conversion to Daikon inputs are obtained in an automatic way.

We will refer to the three examples presented above and to a nondeterministic
variant of the predator-prey problem [10] in order to illustrate what kind of
properties we can check. There are various ways to classify the properties we



aim to verify. In certain areas there have been identified specific types of queries
categorised as patterns [16]. We will refer to some of these in the presentation
below. We will present those properties as they have been captured by the Daikon
tool and as LTL expressions.

We have initially looked at those properties that state the main invariants of
the system. These invariants represent one of the main sets of patterns in [16].
It is obvious that we have been after properties like “two times the number of
c’s equals the number of d’s” in the examples given by Π1 and Π3. Indeed, these
properties have been identified by the Daikon tool as

2 * c - d == 0

or

2 * orig(c) - orig(d) == 0

where orig(c) means c in the previous step.
This property is then checked with the LTL query G ( 2 * c - d = 0). It

is easy to observe that this invariant does not hold for the P system Π2, which
works in an asynchronous way. Indeed this is neither returned by Daikon nor
verified by NuSMV. This is a good example of a property that returns a test
sequence for our system.

Other properties that are extracted by Daikon from the traces generated by
P-Lingua describe some expected properties of a correct model. For instance in
all these examples we expect that the number of occurrences of each of the vari-
ables a, b, x, y is either 0 or 1. This is present in the list of properties identified
by Daikon and the NuSMV model checker shows this is true (in Daikon they
occur as a one of { 0, 1 } or b is boolean and in NuSMV are expressed as
LTL expressions G ( 0 <= a & a <= 1 ) or G ( 0 <= b & b <= 1 )).

Some properties extracted by Daikon reveal relationships between elements of
the multiset across development, sometimes involving different steps. These are
not always obvious and can be utilised to generate some further more complex
conditions. For example for the first P system, Π1, it is identified the property
2*c-2*orig(a)-orig(d)which links c with a, d occurring in the previous step.
This property holds for this example as it is shown by NuSMV.

Daikon was able to identify simple forms of consequence patterns [16], when
the two states appear one after the other. For the Π1 P system a relationship be-
tween consecutive occurrences of c is stated as (c == 0) ==> (orig(c) == 0),
which is true as it is shown by the NuSMV formula G((c=0)->(c_old=0)).

The nondeterministic variant of the predator-prey problem can be defined
by the following P system, ΠPP = (V, [ ]1, w1, R1), where V = {a, x, y, b},
R1 = {ax → xx, xy → yy, y → b} and w1 is the initial multiset. We considered
simulations for w1 = a100x100y10 and simulations and verifications using NuSMV
for w1 = a10x10y5. This system simulates the interplay between preys, x’s, and
predators, y’s, in an environment with a fixed amount of resources, a’s. Preys
breed when resources are available and are eaten by predators which also die – the
last rule. Various simulations and analysis made with Daikon reveal consistently
some invariants of this problem; of them only (b == 0) ==> (orig(b) == 0)



and (orig(a) == 0) ==> (a == 0) are validated by NuSMV (G ( (step > 1

& b = 0) -> b_old = 0) and G ( (step > 1 & a_old = 0) -> a = 0), re-
spectively). These show that if at a moment in time the number of death preda-
tors is 0 then this is true for all the previous steps and if the resources are
exhausted they will remain the same. Other potential invariants, like (a <= x)

or (x > y) or (b < x), are not true and NuSMV confirms this. They can be true
only for some executions, but not in general, irrespective of the initial values.

A comprehensive list of Daikon invariants and associated LTL specifications
for the above examples has been collected and is available from EvoMT website
http://fmi.upit.ro/evomt/psys/psys_daikon.html.

5 Conclusions

This paper has investigated a methodology to verify P systems specifications, by
first identifying these properties as invariants produced by the Daikon tool and
then formally checking whether these are true, by using NuSMV. The benefits
of this methods have been identified and assessed through some case studies.

The methods suffers from the well known scalability issues most of the model
checking based approaches exhibit.

In our future research we aim to overcome some of the limitations of the above
presented approach, by better codifications of the systems and better formulated
properties to be checked. We also intend to link the formal verification with
testing and to expand it to other classes of P systems, including stochastic P
systems which start to be increasingly used in various applications.
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Appendix. NuSMV Specification

Based on the P system specification, the tool developed by the authors generates
a SMV file, that will be processed by the NuSMV model checker.

-- This is a 1-membrane P system working in a maximally parallel manner

-- The NuSMV file is automatically generated

-- The P system consists of:

-- Alphabet = [a, b, c, d, x, y]

-- Initial multiset = x, y

-- Rules:

-- r1 : x --> a

-- r2 : y --> b



-- r3 : a --> x, c

-- r4 : b --> y, d*2

MODULE main

VAR

a : 0..15;

b : 0..15;

c : 0..15;

d : 0..15;

x : 0..15;

y : 0..15;

a_old : 0..15;

b_old : 0..15;

c_old : 0..15;

d_old : 0..15;

x_old : 0..15;

y_old : 0..15;

n1 : 0..15;

n2 : 0..15;

n3 : 0..15;

n4 : 0..15;

state : {running, halt, crash};

step : 0..15;

DEFINE

Max := 10;

MaxSteps := 10;

Sup := 10;

ASSIGN

init(a) := 0;

init(b) := 0;

init(c) := 0;

init(d) := 0;

init(x) := 1;

init(y) := 1;

init(a_old) := 0;

init(b_old) := 0;

init(c_old) := 0;

init(d_old) := 0;

init(x_old) := 0;

init(y_old) := 0;

init(n1) := 0;

init(n2) := 0;

init(n3) := 0;

init(n4) := 0;

init(state) := running;

init(step) := 0;



ASSIGN

next(a_old) := a;

next(b_old) := b;

next(c_old) := c;

next(d_old) := d;

next(x_old) := x;

next(y_old) := y;

next(step) := case

(step <= MaxSteps & state=running) : step + 1;

1 : step;

esac;

TRANS

-- STATE = running

state = running & next(state) = running &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 )&

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup ) |

state = running & next(state) = halt &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

(next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

state = running & next(state) = crash &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &



! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

(step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

-- STATE = HALT

state = halt & next(state) = halt &

next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 &

next(a) = a & next(b) = b & next(c) = c & next(d) = d & next(x) = x &

next(y) = y |

-- STATE = CRASH

state = crash & next(state) = crash &

next(n1) = n1 & next(n2) = n2 & next(n3) = n3 & next(n4) = n4 &

next(a) = a & next(b) = b & next(c) = c & next(d) = d & next(x) = x &

next(y) = y

-- Simple LTL checks

LTLSPEC G ( a = b )

LTLSPEC G ( x = y )

LTLSPEC G ( 0 <= a & a <= 1 )

LTLSPEC G ( d mod 2 = 0)

LTLSPEC G ( 0 <= x & x <= 1 )

LTLSPEC G ( step > 1 & state = running -> a = x_old )

LTLSPEC G ( 2 * c - d = 0)
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