
Testing based on P systems – an overview

Marian Gheorghe1,2 and Florentin Ipate2

1 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

Email: M.Gheorghe@dcs.shef.ac.uk
2 Department of Computer Science, Faculty of Mathematics and Computer Science

The University of Pitesti
Str Targu din Vale 1, 110040 Pitesti
Email: florentin.ipate@ifsoft.ro

Abstract. In this extended abstract there are surveyed various testing
approaches utilised so far for applications based on P systems.

Keywords: P systems, grammars, finite state machines, model based testing

1 Introduction

All software applications, as any engineering products, irrespective of their na-
ture and purpose, are thoroughly tested before being released, installed and
used. Testing appears everywhere, is part of any technology, and does not have
a substitute. In many hardware or software systems testing is conducted together
with formal verification, especially when a certain formal model is utilised. In
software industry testing is a necessary mechanism to increase the confidence in
the product correctness and to make sure it works properly.

P systems area, initially introduced by [11], has been under an intensive
investigation in the last decade. It covers a broad range of aspects, from theoret-
ical investigations into the computational power and descriptional complexity of
various mechanisms, to applications in modelling different natural or engineered
systems, and from interactions with other computational models to implemen-
tations of various problems utilising either certain tools or general purpose pro-
gramming languages. An account of the various developments of the field, mostly
at the theoretical level, is provided in [13], [12]; applications of P systems are
presented in [2]. The most recent research aspects of this field are reported in
[14].

Testing P systems has been so far considered by using certain coverage prin-
ciples. More often the rule coverage is utilised, by taking into account different
contexts. In order to reveal the usage of the rules, grammar and automaton based
methods are derived from P systems specifications. These two types of testing
methods are reviewed in the following sections. Some specific test set generation
methods are analysed and discussed.

2 Grammar based methods

In the context of grammar testing it is assumed that for a given specification
defined as a grammar, an implementation of it exists and this will be tested. In
order to test the implementation, a test set is built, as a finite set of sequences
containing references to rules.

Although there are similarities between context-free grammars utilised in
grammar testing and basic P systems, that we aim to consider, there are also ma-
jor differences that pose new problems in defining testing methods and strategies
to obtain tests sets. Some of the difficulties encountered when some grammar-like
testing procedures are introduced, are related to: the hierarchical compartmen-
talisation of the P system model, parallel behaviour, communication mecha-
nisms, the lack of a non-terminal alphabet and the use of multisets of objects
instead of sets of strings.

The rule coverage criteria discussed will be illustrated for one compartment
P system, i.e., Π = (V, µ, w, R), where µ = [1]1. The simplest and most basic
rule coverage criterion, called rule coverage, is defined in such a way that every
rule from R is covered by a certain computation; i.e., for each rule r ∈ R, r :
a → v, there is a multiset ur over V which covers r (there is a computation
w =⇒∗ xay =⇒ x′vy′ =⇒∗ ur; w, x, y, v, ur ∈ V ∗, a ∈ V). Some more complex
coverage criteria can be considered (see [4], [5]).

Let us consider the following one compartment P system, Π1 = (V1, µ1, w1, R1),
where V1 = {s, a, b, c}; µ1 = [1]1 - i.e., one compartment, denoted by 1; w1 = s;
R1 = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c}. Each multiset w, will be
denoted by a vector of non-negative integer numbers (|w|s, |w|a, |w|b, |w|c). Test
sets for Π1 satisfying the rule coverage criterion are

– T1,1 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)} and
– T1,2 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 3)}.

3 Finite state machine based methods

Finite state machine based testing is widely used for software testing. It provides
very efficient and exhaustive testing strategies and well investigated methods to
generate test sets. In this case it is assumed that a model of the system under
test is provided in the form of a finite state machine. In our case we will consider
a way to obtain such a machine from a partial computation in a P system.
More precisely we will consider computations of at most k steps, for a given
integer k, starting from the initial multisets. These can be considered paths in
an automaton defining partial computations of no more than k steps. Either
this automaton or a minimal one covering it can be now utilised as a model to
generate test sets (see [5], [7]).

A different aproach can be also considered by using a special class of state ma-
chines, called X-machines. Given that the relationships between various classes
of P systems and these machines are well studied ([14], [1]) and the X-machine

based testing is well developed, standard techniques for generatig tests sets based
on X-machines can be adapted to the case of P systems [6].

Specific coverage criteria can be defined in the case of finite state machine
based testing. One such criterion, called transition coverage, aims to produce a
test set in such a way that every single transition of the model is covered.

If we build a finite state machine associated with the previous P system,
Π1, for partial computations of length at most 4, then a test set satisfying the
transition cover principle is
T1,s = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3)}.

The transition cover criterion, however, does not only depend on the rules
applied, but also on the state reached by the system when a given rule has been
applied.

4 Generating test sets using model checking

The generation of different test sets, according to certain coverage criteria, can
be done by utilising some specific algorithms or by applying some tools that
indirectly will generate test sets. Such tools, like model checkers, can be used to
verify some general properties of a model and when these are not fulfilled then
some counter-examples are produced, which act as test sets in certain circum-
stances.

In the case of P systems an encoding based on a Kripke structure associated
with the system is provided for model checkers like NuSMV [9] or SPIN [10].
This relies on certain operations defined in [3] and encapsulates the main features
of a P system, including maximal parallelism and communication, but within a
finite space of values associated with the objects present in the system. The rule
coverage principle is expressed by using temporal logics queries available in such
contexts. By negating specific coverage criteria, counter-examples are generated.
For instance the rule coverage set T1,1 can be obtained in this way.

5 Conclusions

P systems based testing methods are reviewed and some coverage principles
presented. Two main classes of methods, based on grammars and finite state
machines, are introduced and specific test generation tools based on model check-
ing techniques are mentioned. Apart from these methods some other approaches
have been considered when mutation techniques have been employed [8].

Acknowledgements. The research of MG and FI is supported by CNCSIS
grant no.643/2009, An integrated evolutionary approach to formal modelling and

testing.

References

1. J. Aguado, T. Balanescu, A. Cowling, M. Gheorghe, M. Holcombe, F. Ipate, (2002)
P systems with replicated rewriting and stream X-machines (Eilenberg machines),
Fundamenta Informaticae, 49, 17–33.

2. G. Ciobanu, M.J. Pérez-Jiménez, Gh. Păun, eds., (2006) Applications of membrane

computing, Natural Computing Series, Springer.
3. Z. Dang, O.H. Ibarra, C. Li, G. Xie, (2006) Decidability of model-checking P

systems, Journal of Automata, Languages and Combinatorics, 11, 179-198.
4. M. Gheorghe, F. Ipate, (2008) On testing P systems, in D. W. Corne, P. Frisco, Gh.

Pǎun, G. Rozenberg, A. Salomaa (eds.), 9th Workshop on Membrane Computing,

Lecture Notes in Computer Science, 5391, 204–216.
5. M. Gheorghe, F. Ipate, R. Lefticaru, C. Dragomir (2010) An integrated approach to

P systems formal verification, in Proceedings of the 11th Conference on Membrane

Computing, (accepted).
6. F. Ipate, M. Gheorghe, (2008) Testing non-deterministic stream X-machine models

and P systems, Electronic Notes in Theoretical Computer Science, 227, 113–226.
7. F. Ipate, M. Gheorghe, (2009) Finite state based testing of P systems, Natural

Computing, 8, 833–846.
8. F. Ipate, M. Gheorghe, (2009) Mutation based testing of P systems, International

Journal of Computers, Communications & Control, 4, 253–262.
9. F. Ipate, M. Gheorghe, R. Lefticaru, (2010) Test generation from P systems using

model checking, Journal of Logic and Algebraic Programming, (in press).
10. F. Ipate, R. Lefticaru, C. Tudose (2010) Formal verification of P systems using

SPIN, International Journal of Foundations of Computer Science, (submitted).
11. Gh. Pǎun, (2000) Computing with membranes, Journal of Computer and System

Sciences, 61, 108–143.
12. Gh. Pǎun, (2002) Membrane computing. An introduction, Springer, Berlin.
13. Gh. Pǎun, G. Rozenberg, (2002) A guide to membrane computing, Theoretical

Computer Science, 287, 73–100.
14. Gh. Pǎun, G. Rozenberg, A. Salomaa, eds., (2009) The Oxford handbook of mem-

brane computing, The Oxford University Press, Oxford.

	Testing based on P systems -- an overview

