
P systems and unique-sum sets

Pierluigi Frisco
School of Math. and Comp. Sciences,

Heriot-Watt University,
EH14 4AS Edinburgh, UK,

P.Frisco@hw.ac.uk

Abstract. We study P systems with symport/antiport and a new model
of purely catalytic P systems, called purely multi-catalytic P systems,
when these devices use only one symbol. Our proofs use unique-sum sets,
sets of integer numbers whose sum can only be obtained in a unique way
with the elements of the set itself.
We improve some results related to the descriptional complexity of the
P systems with symport/antiport considered by us and we define one
infinite hierarchy of computations.

1 Introduction

Membrane systems (P systems) are an abstract model of computation inspired
by the compartmentalisation present in eukariotic cells [15, 16, 6, 18]. For sev-
eral models of P systems it is possible to define rewriting systems without any
compartment able to simulate (that is, mimic the behaviour of) the original P
system. This is possible through the use in the rewriting systems of several sym-
bols encoding the compartments of the P system and the passage of the symbols
in the P system from one compartment to another.

This possibility to remove the compartments from a P system is something
well known in this field of research and it has been formally studied through the
use of Petri nets [6, 19].

Some models of P systems do not allow a reduction to rewriting systems. If,
for instance, a P system with several compartments is ought to have only one
symbol, then no other symbol can be introduced in a rewriting system simulating
the P system. So, it makes a lot of sense to study P systems with restrictions
in the number of used symbols, as these systems are the ones that do need the
compartments in order to operate.

The computational power of P systems with symport/antiport, one of the
most elegant and the most studied model of P system [14], has been studied
when restrictions on the number of used symbols are in place [17, 1, 2, 6, 11].

Here we continue this line of research on P systems with symport/antiport
proving that when these devices operate under maximal strategy, then the model
using only one symbol and with 2n+3, n ≥ 2, compartments can simulate register
machines. In this way we partially answer suggestion for research 5.3 in [6] and
a problem stated in [11]. We also prove that when the number of occurrences
of the unique symbol is bounded, then an infinite hierarchy on the number of
compartments is present. We also study purely multi-catalytic P systems a model

of catalytic P systems introduced in the present paper, when these systems have
several catalysts and only one symbol which is not a catalyst.

The provided proofs employ the use of unique-sum sets: sets of integer num-
bers whose sum can only be obtained in a unique way with the elements of the
set itself.

2 Basic definitions

We assume the reader to have familiarity with basic concepts of formal language
theory [9], register machines and P systems [6, 18]. In this section we recall
particular aspects relevant to our presentation.

The symbol N denotes the set of natural numbers {0, 1, 2, . . .}, while N+

denotes {1, 2, 3, . . .} and ∅ denotes the empty set.
Given a set V its cardinality, that is, the number of elements in V , is de-

noted with |V |; V ∗ denotes the free monoid generated by V with the operation
of concatenation, λ indicates the empty word.

Let a grammar G = (N, T, S, P) be of type-0 or of type-3. The length of the
strings over T which can be obtained by derivations of G is the set of numbers
generated by G. The respective classes of numbers are denoted by N REG and
N RE.

For k ∈ N, Nk RE equals the family of recursively enumerable sets with ele-
ments greater than or equal to k i.e., {L ∈ N RE | {0, . . . , k − 1} ∩ L = ∅}, or
equivalently, {k+L | L ∈ N RE}, where k+L = {k+n | n ∈ L}. From the point
of computational completeness, the families N RE and Nk RE are equivalent, as
a Turing machine can make the translation, but here we inherit the language
definition used in the literature of P systems and make this distinction.

A multiset (over V) is a function M : V → N ∪ {+∞}; for a ∈ V , M(a)
defines the multiplicity of a in the multiset M . We will say that an element a of
a multiset M has infinite multiplicity if M(a) = +∞. In case the multiplicity of
an element of a multiset is 1 we will indicate just the element, otherwise (a, M(a))
is indicated. The support of a multiset M is the set supp(M) = {a ∈ V | M(a) >
0}. The size of a multiset is defined by the function | | : (V → N ∪ +{∞}) →
N∪ {+∞}, where for M multiset over V , |M | = ∑

a∈supp(M) M(a). The symbol
φ indicates the empty multiset, that is the multiset whose support is the empty
set.

Let M1,M2 : V → N ∪ {+∞} be two multisets. The union of M1 and M2 is
the multiset M1∪M2 : V → N∪+{∞} defined by (M1∪M2)(a) = M1(a)+M2(a),
for all a ∈ V . The difference M1 −M2 is here defined only when M2 is included
in M1 (which means that M1(a) ≥ M2(a) for all a ∈ V) and it is the multiset
M1−M2 : V → N∪{+∞} given by (M1−M2)(a) = M1(a)−M2(a) for all a ∈ V .
Of course, if M1(a) = +∞ and M2(a) is finite, then M1(a)−M2(a) = +∞.

In this paper we describe formal systems simulating other formal systems.
The concept of simulation is widely used in (theoretical) computer science and
it refers to the fact that a device can mimic the behaviour of another device. In
the present paper we use the definition of this concept as given in [7].

2.1 P systems

In this section we introduce the models of P system used in the present paper.
Before doing so we define cell-trees.

A directed graph µ = (N, E), where N is the finite set of vertices and E is
the set of edges, is said to be a cell-tree if:

0 ∈ N where the vertex 0 is the root of the tree;
each vertex in N except the root defines a membrane compartment (in this

paper referred simply as compartment) of a P system Π; the root 0 defines
the environment;

the root has only one child; this last is called skin compartment;
the set E is the ‘father of’ relation present in µ equivalent to the nesting of

membranes normally used in the literature of P systems.

In the following we represent cell-tree as boxes with a subscript, the number
of the vertex represented by them, and eventually containing other boxes and
symbols.

An accepting P system with symport/antiport [14, 6, 18] of degree m, m ≥ 1,
is a construct

Π = (V, µ, L0, L1, . . . , Lm, R1, . . . , Rm, comp)

where:

V is a finite set of symbols;
µ = (N, E) is a cell-tree with m vertices underlying Π;
Li, 0 ≤ i ≤ m, are multisets over V defining the initial multisets of symbols.

All the symbols in L0 have infinite multiplicity while the ones in L1, . . . , Lm

do not;
Ri, 1 ≤ i ≤ m, are sets containing a finite number of rules of the form:

(v; in), (v; out) (called symport rules), or (w; out/v; in) (called antiport rules),
with v, w nonempty multisets over V with a finite support. Thus the sym-
ports (φ; in) and (φ; out) and the antiports (b; out/a; in) with a = φ or b = φ
are not allowed;

comp ⊂ {1, . . . , m} is the set of initial compartments. It is common practice to
have |comp| = 1, anyhow, in this paper we will consider also cases in which
|comp| > 1.

A configuration of a P system with symport/antiport of degree m is given
by the m + 1-tuple (M0 − L0,M1, . . . ,Mm) of multisets over V associated to
the environment and the compartments {1, . . . , m} respectively. Note that the

configuration does not record the symbols in the environment that occur with
infinite multiplicity as they are invariant to any configuration. The m + 1-
tuple (φ,L1, . . . , Lm) is called initial configuration. For two configurations (M0−
L0, M1, . . . , Mm), (M ′

0−L0,M
′
1, . . . , M

′
m) of Π we write (M0−L0,M1, . . . ,Mm)

⇒ (M ′
0 − L0,M

′
1, . . . ,M

′
m) indicating a transition from (M0 − L0,M1, . . . ,Mm)

to (M ′
0 − L0,M

′
1, . . . ,M

′
m) that is the application of a set of rules associated to

each compartment under the requirement of maximal strategy: in such a multiset
a rule is applied at most once and all the rules that can be applied are actually
applied (an example follows). If more than one maximal set of rules can be ap-
plied, then exactly one of them is nondeterministically chosen; all rules present
in this set are applied in parallel.

The rules Rq associated to a compartment q ∈ N\{0} can change the multi-
sets Mq and Mp of p father of q in µ in the following way:

– a multiset v included in Mp may be subtracted from Mp and may be united
to Mq, if the symport rule (v; in) is present in Rp. In this case the multisets
change from Mp and Mq to M ′

p = Mp − v and M ′
q = Mq ∪ v respectively;

– a multiset v included in Mq may be subtracted from Mq and united to Mp

if the symport rule (v; out) is present in Rq. The multisets change from Mp

and Mq to M ′
p = Mp ∪ v and M ′

q = Mq − v respectively;
– a multiset v included in Mp may be united to Mq while, at the same time,

a multiset w included in Mq may be united to Mp if the antiport rule
(w; out/v; in) is present in Rq. In this case the multisets of symbols change
from Mp and Mq to M ′

p = (Mp−v)∪w and M ′
q = (Mq−w)∪v respectively.

In general, if a multiset v is subtracted from Mp and united to Mq we will say
that v passes from compartment p to compartment q.

The weight of a rule is given by |v| (that is, the cardinality of the multiset
v) in case of a symport (v; in) or (v; out) and by max({|v|, |w|}) in case of an
antiport (v; out/w; in).

A computation is a finite sequence of transitions between configurations of
a system Π starting from the initial configuration (φ,L1, . . . , Lm). If a compu-
tation is finite, then the last configuration is called final and we say that the
system halts.

The result of the computation is given by the vector of multiset of symbols
(the vector has dimension |comp|, if this dimension is 1, then we speak of set of
numbers) present in the compartments in comp in the initial configuration when,
on such initial configuration, the P system halts (that is, when the multiset of
applicable rules has empty support).

The set of numbers whose elements are bigger than k, k ∈ N+, accepted
by P systems with symport/antiport operating under maximal strategy using s
symbols, degree at most m, using symports of weight at most p and antiports
of weight at most q is denoted by NkaOsPm(symp, antiq)ms. When p, q or m
are not bounded, then they are replaced by ∗. In this paper we prefer to use
the subscript ms when we denote sets of numbers accepted by formal systems,
because we want to emphasise that these sets are obtained by systems operating
under maximal strategy.

The following example aims to clarify how maximal strategy operates. Let
Π = ({a, b}, µ, φ, {a3, b2}, φ, ∅, R2, {2}) be a P system with symport/antiport
operating under maximal strategy with:

µ =
2

1
;

R2 = {1 : (a; in), 2 : (ab; in), 3 : (a2b2; in), 4 : (a3b2; in)}.
In order to facilitate the explanation rules have been numbered. In the initial

configuration of Π the applicable rules are: (1, 2), (1, 3) and 4 (where rule
numbers in parenthesis denote that the rules are applied in parallel).

Differently than maximal parallelism, in maximal strategy in a configuration
a rule can be applied at most once. This is present in the example, as, for instance,
the triple application of rule 1 is not allowed even if possible. Moreover, maximal
strategy does not aim to maximise the number of applied rules. In the example,
either rules (1, 2), or rules (1, 3) or rule 4 can be applied.

It should be clear that when a P system operates under maximal strategy
it makes sense to have rules in more than one copy. If, for instance, in previous
example the set R2 contained also 1′ : (a; in) and 1′′ : (a; in), then some of the
applicable rules would be: (1, 1′, 1′′), (1, 1′, 2), (1′′, 3), etc.

We now introduce a model of purely catalytic P systems [15, 6, 18], called
purely multi-catalytic P systems, with limitations in its alphabet and having a
new kind of rules.

An accepting purely multi-catalytic P system of degree m is a construct

Π = (V,C, µ, L1, . . . , Lm, R1, . . . , Rm, comp)

where:

V = {a} is an alphabet;
C, C ∩ V = ∅, is a set of catalysts;
µ = (N, E) is a cell-tree with m vertices underlying Π;
Li, 1 ≤ i ≤ m, are multisets over V defining the initial multisets of symbols;
Ri, 1 ≤ i ≤ m, are finite sets of rules of the kind: cap → c(aq, tar) with

p, q ∈ N+, c ∈ C and tar ∈ {here, in, out}, where the set {here, in, out}
contains target indicators;

comp ∈ {1, . . . ,m} is the initial compartment.

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over V asso-
ciated with the compartments of Π. The m-tuple (L1, . . . , Lm) is called initial
configuration.

Let Π = (V, C, µ, L1, . . . , Lm, R1, . . . , Rm, comp) be an accepting purely mul-
ti-catalytic P system and let j, i and k be three vertices in µ such that i is the
parent of j and j is the parent of k. Moreover, let Rj be the set of rules associated
with compartment j and let Mj , Mi and Mk be multisets over V , associated
with vertices j, i and k, respectively, such that cap → c(aq, tar) ∈ Rj , p, q ∈ N+

and tar ∈ {here, in, out}. Depending on the value of tar the application of
cap → c(aq, tar) ∈ Rj changes the multisets Mj ,Mi and Mk according to the
following:

if tar = here, then Mj becomes M ′
j = Mj \ {ap} ∪ {aq} while Mi and Mk

remain unchanged;
if tar = in, then Mj becomes M ′

j = Mj \ {ap}, Mk becomes M ′
k = Mk ∪ {aq}

and Mi remains unchanged;
if tar = out, then Mj becomes M ′

j = Mj \ {ap}, Mi becomes M ′
i = Mi ∪ {aq}

and Mk remains unchanged.

In the following the target indicator here is omitted. For two configurations
(M1, . . . , Mm) and (M ′

1, . . . ,M
′
m) of Π we write (M1, . . . , Mm) ⇒ (M ′

1, . . . ,M
′
m)

to denote a transition from (M1, . . . ,Mm) to (M ′
1, . . . ,M

′
m), that is, the applica-

tion of a multiset of rules associated with each compartment under the require-
ment of maximal strategy.

A computation is a sequence of transitions between configurations of a system
Π starting from the initial configuration (L1, . . . , Lm). If a computation is finite,
then the last configuration is called final and we say that the system halts.

Given a purely multi-catalytic P system Π = (V, C, µ, L1, . . . , Lm, R1, . . . ,
Rm, comp) with comp = c1, we consider two results from a computation of Π:

N(Π): the sum of occurrences of a and catalysts present in comp in the initial
configuration, when, on such initial configuration, Π halts;

N−c(Π): the occurrences of a present in comp in the initial configuration, when,
on such initial configuration, Π halts.

Moreover,

NkaO1Pm(pmcatp)ms = {N(Π) | Π is an accepting purely multi-catalytic P
system operating under maximal strategy with degree at most m and using
at most p catalysts and such that each element in N(Π) is bigger than
k, k ∈ N+;

NaO1Pm,−c(pmcatp)ms = {N−c(Π) | Π is an accepting purely multi-catalytic
P system operating under maximal strategy, of degree at most m and using
at most p catalysts};
So, for instance, if such a P system has comp = 2 and the only initial con-

figuration for which the P system halts is such that compartment 2 has two
catalysts and three occurrences of a, then:

{5} is the set accepted if all symbols counted with their multiplicity are consid-
ered;

{3} is the set accepted if only the a symbols are considered;

2.2 Register machines

A register machine [13] (also known as (multi)counter machines, multipushdown
machines, program machine and counter automata) with n registers (n ∈ N+) is
a construct M = (S, R, s1, sf), where:

S is a finite set of states;

R is a finite set of instructions of the form (sp, γ
−
t , sq), (sp, γ

+
t , sq) or (sp, γj

=0,
sq), with sp, sq ∈ S, sp 6= sf , 1 ≤ t ≤ n;

s1, sf ∈ S are respectively called the initial and final states.

A configuration of a register machines M with n registers is given by an ele-
ment in the n+1-tuples (s, Nn), s ∈ S. Given two configurations (s, val(γ1), . . . ,
val(γn)) and (s′, γ′1, . . . , γ

′
n) (where val : {γ1, . . . , γn} → N is the function return-

ing the content of a register) we define a computational step as (s, val(γ1), . . . ,
val(γn)) ` (s′, γ′1, . . . , γ

′
n):

– if (s, γ−t , sq) ∈ S and val(γt) 6= 0, then s′ = sq, γ′t = val(γt) − 1, γ′k =
val(γk), k 6= t, 1 ≤ k ≤ n;
if val(γt) = 0, then the register machine halts in the non-final state s;
(informally: in state s if the content of register γt is greater than 0, then
subtract 1 from that register and change state into sq, otherwise halt in a
non-final state);

– if (sp, γ
=0
j , sq) ∈ S and val(γt) = 0, then s′ = sq, γ′k = val(γk), 1 ≤ k ≤ n;

if val(γt) 6= 0, then the register machine halts in the non-final state s;
(informally: in state s if the content of register γt is 0, then change state into
sq, otherwise halt in a non-final state);

– if (s, γ+
t , sq) ∈ S, then s′ = sq, γ

′
t = val(γt) + 1, γ′k = val(γk), k 6= t, 1 ≤

k ≤ n;
(informally: in state s add 1 to register γt and change state into sq).

A computation is a sequence of computational steps of a register machine M
starting from the initial configuration (s1, val(γ1), 0, . . . , 0). If a computation is
finite, then the last configuration is called final. If a final configuration has sf

as state, then we say that M halts and it accepts the input val(γ1). For this rea-
son γ1 is called the input register and M is called an accepting register machine.
Starting from an initial configuration (s1, val(γ1), 0, . . . , 0) a register machine M
could have a finite sequence of computational steps in which the last one does
not have sf as state. In this case we say that M stops and val(γ1) is not accepted.

Partially blind register machines [8] are defined as register machines without
test on zero. The only allowed operations are (s, γ+, s′) and (s, γ−, s′) where γ
is a register. In case the machine tries to subtract from a register having value
zero it halts in a non-final state. Partially blind register machines are strictly
less powerful from a computational point of view than register machines.

We summarise in the following proposition, results from [13, 3]:

Proposition 1 Register machines with three registers can accept N RE, the num-
ber of registers can be decreased to two if specific input format (for example, 2x

instead of x) is used.
Register machines with only one register can accept N REG.

Restricted register machines are defined as register machines restricted in
their operations: they can increase the value of a register, say β, only if they
decrease the value of another register, say γ, at the same time.

So, restricted register machines have only one kind of instruction: (s, γ−, β+,
v, w) with s, v, w states and γ, β different registers of the restricted register
machine. If when in state s the content of register γ can be decreased by 1,
then the one of register β is increased by 1 and the machine goes into state v,
otherwise no operation is performed on the registers and the machine goes into
state w.

Here a theorem from [10] that we will need:

Theorem 1. Restricted register machines with n+1 registers are more powerful
from a computational point of view than those with n registers.

A consequence of this theorem is that an infinite hierarchy is induced, by
means of the number of registers, among families of computed vectors of num-
bers.

2.3 Operational modes

Given a formal system, it is normally possible to let it operate (run) in different
ways.

P systems have their operational mode embedded in their definition. This
means that, for instance, a P systems Π with symport/antiport operating under
maximal strategy operates only under maximal strategy. If one wants to run the
same system Π in a different way, then it has to define it.

In this paper we follow this custom. Differently than the vast majority of P
systems, the models of P systems considered in this paper do not operate under
maximal parallelism but under maximal strategy. The term maximal strategy
is borrowed from the Petri net nomenclature. In the literature of P systems
maximal strategy has been defined under different names: in [12], for instance, it
has been called k-Max Parallel (where k is the number of rules of the P system).
Here we prefer to use the term maximal strategy because it was introduced earlier
in time.

Studies of different operational models for P systems can be found in [6, 4].

2.4 Unique-sum sets

Some proof in this paper use the following mathematical concepts.

Definition 1 Let U = {u1, . . . , up} be a set of distinct natural numbers and
σU =

∑p
i=1 ui the sum of the elements of U . The set U is said to be a unique-

sum set if the equation
∑p

i=1 ciui = σU , ci ∈ N, has only the solutions ci =
1, 1 ≤ i ≤ p.

An example of unique-sum set is U ′ = {4, 6, 7} as 4 + 6 + 7 = 17 and 17
cannot be obtained with any other linear combination of 4, 6 and 7. The set
U ′′ = {4, 5, 6} is not a unique-sum set as 4 + 5 + 6 = 15 = 5 + 5 + 5.

It should be clear that any subset of a unique-sum set is a unique-sum set,
too. In particular none of the elements of a unique-sum set can be obtained as
a linear combination of the remaining elements in the set.

Proposition 2 The sets Up = ∪p
m=1{2p − 2p−m} with p ∈ N+, are unique-sum

sets.

The sum of the elements of the sets in this family is σUp
= (p−1)2p +1. The

first sets in this family are:

U1 = {1};
U2 = {2, 3};
U3 = {4, 6, 7};
U4 = {8, 12, 14, 15};
U5 = {16, 24, 28, 30, 31};
U6 = {32, 48, 56, 60, 62, 63}.

From [5] it is known that:

Theorem 2. The family of sets indicated in Proposition 2 contains the
unique-sum sets having minimal sum in function of their number of elements.

3 P systems with symport/antiport

In [11] it was proved that P system with symport/antiport operating under
maximal parallelism, with only one symbol and degree 2n + 3 can simulate a
partially blind register machines with n registers. In [11] it was also proved
that if priorities are added to the rules, then the obtained P system, having
n+3 compartments, can simulate register machines with n registers. The former
result was improved in [6] where it was proved that any partially blind register
machine with n registers can be simulated by a P system with symport/antiport
with only one symbol, degree n + 3 and operating under maximal parallelism.
Here we prove that P systems with symport/antiport operating under maximal
strategy, with only one symbol and degree 2n+3 can simulate register machines
with n registers.

Theorem 3. Any accepting register machines with n registers can be simulated
by an accepting P system with symport/antiport operating under maximal strat-
egy, using only one symbol and with degree 2n + 3.

Proof. Let M = (S, I, s1, sf) be a register machine with n registers γ1, . . . , γn.
We define the P system with symport/antiport operating under maximal strat-
egy
Π = ({a}, µ, {a}, L1, . . . , Ln+2, L2′ , . . . , Ln+2′ , R1, . . . , Rn+2, R2′ , . . . , Rn+2′ ,

{2})
where:

µ =
2

2′
. . .

n+1
n+1′

n+2
n+2′

1

;

L1 = ac(s1);
Lj+1 = ab(j)+2val(γj), 1 ≤ j ≤ n;
Lj+1′ = ab(j), 1 ≤ j ≤ n;
Ln+2 = a;
Ln+3 = a;
R1 = {1 : (ac(p); out/ac(1)(q)+b(t)+2; in), 2 : (ac(1)(q); out/ac(2)(q); in),

3 : (ab(t)+c(2)(q); out/ac(q); in) | (sp, γ
+
t , sq) ∈ I}∪

{4 : (ac(p); out/ab(t)+c(3)(q); in), 6 : (ac(p); out/ac(3)(q)+b(t)+2; in),
7 : (ac(3)(q); out/ac(4)(q); in),
8 : (ac(4)(q)+b(t); out/ac(5)(q)+b(t)+1; in),
9 : (ac(5)(q); out/ac(6)(q); in), 11 : (ac(6)(q)+b(t); out/ac(7)(q)+b(t); in),
13 : (ac(7)(q); out/ac(8)(q); in), 15 : (ac(8)(q)+b(t)+5; out/ac(q); in)

| (sp, γ
−
t , sq) ∈ I}∪

{16 : (ac(p); out/ac(10)(q)+5b(t)+2; in), 17 : (ac(10)(q); out/ac(11)(q); in),
21 : (ac(11)(q)+b(t); out/ac(12)(q)+b(t)+2; in),
22 : (ac(12)(q); out/ac(13)(q); in),
25 : (ac(13)(q)+5b(t); out/ac(14)(q)+b(t)+1; in),
26 : (ac(14)(q); out/ac(15)(q); in),
27 : (ac(15)(q)+b(t); out/ac(16)(q)+b(t); in),
28 : (ac(16)(q); out/ac(17)(q); in),
29 : (ac(17)(q)+b(t)+5; out/ac(q); in) | (sp, γ

=0
j , sq) ∈ I}∪

{30 : (ac(sf); out)}
Rj+1′ = {3 : (ab(j); out/ab(j)+2; in), 10 : (ab(j); out/ab(j)+1; in),

14 : (ab(j)+5; out/ab(j); in), 18 : (ab(j); out/a5b(j)+2; in),
23 : (a5b(j); out/ab(j)+2; in)} 1 ≤ j ≤ n;

Rj+1 = {5 : (ab(j); out/ab(j)+2; in), 12 : (ab(j)+3; out/ab(j)−1; in),
19 : (a; out/a2b(j); in), 20 : (a; out/a2b(j); in)} 1 ≤ j ≤ n;

Rn+2 = {31 : (a; out/a; in)};
Rn+2′ = {32 : (a; out/a; in)}.
In order to facilitate the explanation rules have been numbered.
This proof requires the use of a unique-sum U with at least n + 18|S| + 1

elements. Different multiplicities of a, where the multiplicities are elements in U ,
are associated with each of the registers and instructions of M . This is performed
by the function b : {1, . . . , n} → U and the eighteen functions c, c(1), . . . , c(17)

all from S to U , injective and with disjoint values.
The exact definition of these functions is irrelevant for the proof, the only

thing that is essential is that the different elements of U are at least 3 units apart
from each other. The reason for this requirement is explained in the following.

The simulation performed by the P system Π is strongly based on the use
of a unique-sum set and on the property that for such sets none of the elements

can be obtained as a linear combination of the remaining elements in the set.
During the computation of Π, different occurrences of the symbol a are present
in the skin compartment. Specific sequences of applied rules allow Π to simulate
instructions of M . Other sequences of applied rules let Π to never halt.

The compartments j + 1, j + 1′, 1 ≤ j ≤ n, are uniquely associated with
registers in M . Each of these compartments contains at least b(j) occurrences
of a in the initial configuration. This number of occurrences of a represents
0 as content of the registers in M . The addition of 1 to register γj in M is
performed adding two occurrence of a to compartment j + 1. Conversely for the
subtraction. The presence of just ac(s), s ∈ S, in the skin compartment indicates
that Π simulates the register machine being in state s.

In the following, rules in parenthesis denote their parallel application.
The simulation of instructions of the kind (sp, γ

+
t , sq) is performed by the

sequential application of rules 1, (2, 3), (4, 5).
The simulation of instructions of the kind (sp, γ

−
t , sq), if in compartment

t + 1 there are at least b(t) + 2 occurrences of a, is performed first adding a3 to
compartment t + 1, and then subtracting a5 from the same compartment. This
is performed by the sequential application of rules 6, (7, 3), (8, 5), (9, 10), (11,
12), (13, 14), 15. If in compartment t+1 there are less than b(t)+2 occurrences
of a, then rule 12 cannot be applied. In this case, one occurrence of a brought
in the skin compartment by rule 11 is used by rule 31. This starts the infinite
application of rule 32, so that Π never halts.

The simulation of instructions of the kind (sp, γ
=0
t , sq), if in compartment

t+1 there are just b(t) occurrences of a (simulating the counter t being empty),
is performed by the sequential application of rules 16, (17, 18), (21, 5), (22, 23),
(25, 5), (26, 10), (27, 12), (28, 14), 29.

Now we explain in more details this long sequence of applied rules. After the
application of rules 6, (17, 18), a5b(t)+2 is present in compartment t + 1′. When
this happens, several rules in Rt+1 can be applied depending on the content of
compartment t + 1. It is important to notice that none of the rules in Rt+1′

can be applied without starting an infinite computation. The rules in these
compartments are all antiports, that is, they need appropriate values in the skin
compartment in order to perform simulations of instructions in M .

If compartment t + 1 contains only ab(t), then either only rule 5 or (19, 20)
are applied (rules 19 and 20 are equal, as we said in the example present in
Section 2.1, this makes sense when maximal strategy is in use). If rules (19, 20)
are applied, then the number of occurrences of a in compartment t+1′ becomes
less than 5b(j). This means that rule 23 cannot be later applied, and Π starts
an infinite computation (so, even if compartment t + 1 contains only ab(t), the
application of rules (19, 20) let the computation to never halt). If instead rule 5
is applied, then rule 23 can be later applied.

If compartment t + 1 contains more than ab(t), then for sure at least rule 19
or 20 is applied (not allowing the later application of rule 23).

The application of rule 5 let 2 occurrences of a to be added to compartment
t + 1. These two occurrences are removed from compartment t + 1 in the same

way the simulation of instructions of the kind (sp, γ
−
t , sq) takes place: first 2

occurrences are added to compartment t + 1 and the 4 occurrences are remove
from this compartment.

The reason why we ask that the elements of U are at least 3 units apart
from each other is that because some configurations see a2 present in the skin
compartment. If the elements of U were not at least 3 units apart from each
other there could be a rule using the number of occurrences of a’s together with
other a’s present in the skin compartment. The application of this rule could let
Π not to simulate M .

We stress that Π runs under maximal strategy (and not maximal paral-
lelism). This means that in one configuration a rule can be applied at most
once. This is essential in the system we presented (that is, Π would not simulate
M if operating under maximal parallelism). For instance, if a2b(j)+10 is present
in compartment t + 1, then rule 12 could be applied twice (under maximal par-
allelism) and this could lead to undesired behaviour.

In the above simulation many other sequences of configurations could occur
but none of them would lead the system to a halt.

When ac(sf) is present in compartment 1, then the application of rule 30 let
ac(sf) to pass to the environment and the computation halts.

The simulation of M is faithful, that is, Π cannot simulate sequences of
instructions that cannot be performed by M . This means that if Π starts in a
configuration in which ac(s1) is present in the skin compartment, ab(1) is present
in compartment 2′, ab(1)+2val(γ1) is present in compartment 2 and compartments
j + 1, j + 1′, 3 ≤ j ≤ n, contain ab(j), then Π halts with ab(j) in compartments
j +1, j +1′, 1 ≤ j ≤ n, only if M reached the final state with all registers empty
if it started from the configuration (s1, val(γ1), 0, . . . , 0). ¤

From the previous theorem and Proposition 1 we have:

Corollary 1. There exist b, b′, p, p′, q, q′ ∈ N+ such that

NbO1P9(symp, antiq)ms = NbRE;

Nb′O1P7(symp′ , antiq′)ms = Nb′RE if a specific input format is used,

If a P system with symport/antiport Π is such that the skin compartment
contains no rule then, for each computation of Π, the number and type of sym-
bols in Π is constant and equal to the one of the initial configuration. In the
following we consider such systems when they use only one symbol.

Theorem 4. The set of vectors accepted by restricted register machines coin-
cides with the ones accepted by P systems with symport/antiport operating under
maximal strategy, using a constant number of occurrences of only one symbol.

Proof. Part I: (These P systems can simulate restricted register machines) This
proofs follows from the one of Theorem 3 after a few changes in the P system

there. Let M = (S, I, s1, sf) be a restricted register machines with n registers
γ1, . . . , γn.

We define the P system with symport/antiport operating under maximal
strategy
Π = ({a}, µ, {a}, L1, . . . , Ln+3, L2′ , . . . , Ln+2′ , R1, . . . , Rn+3, R2′ , . . . , Rn+2′ ,

{2, . . . , n + 1})
where:

µ =
2

2′
. . .

n+1
n+1′

n+2
n+2′

1
n+3

;

Ln+3 = aσ;
Rn+3 = ∅;
the remaining elements of Π are defined as in the proof of Theorem 3 while

σ is the sum of the unique sum set U used in that proof. Also the unique sum set
U and the functions b, c, c(1), . . . , c(17) are as defined in the proof of Theorem 3.

The fact that the number of occurrences of the only symbol is constant in Π
derives from the fact that in restricted register machines the sum of the content
of the counters is constant.

The simulation of the instructions (s, γ−, β+, v, w) can be performed with the
non-deterministic simulations of either (s, γ=0, w) or (s, γ−, v′) and (v′, β+, v),
as explained in the proof of Theorem 3, where v′ is a newly introduced state
uniquely associated to (s, γ−, β+, v, w).

It should be clear that, as the sum of the registers in M is constant, in Π oc-
currences of a needed to simulate the instructions of M are provided by compart-
ment Ln+3. Moreover, if M starts in a configuration with val(γ1), . . . , val(γn)
in its registers, then Π starts in an initial configuration with b(j) + 2var(γj)
in compartment j + 1, 1 ≤ j ≤ n. So, if M reaches its final state sf on input
val(γ1), . . . , val(γn), then Π could halt on input b(j) + 2var(γj), 1 ≤ j ≤ n
accepting this vector of numbers.

If the simulated restricted register machine has n registers, then the simu-
lating P system has 2n + 4 compartments.

Part II: (Restricted register machines can simulate these P systems) Let Π
be such a P system and let M be the restricted register machine simulating
it. Each compartment of Π is associated to a different register in M whose
content reflects the number of occurrences of the only symbol in the associated
compartment. The simulations of each rule of Π is performed by a sequence of
instructions decreasing and increasing the value of registers. With ‘sequence of
instructions’ we mean instructions such that the output state of one instruction
is the input state of the following instruction in the sequence.

Let, for instance, compartment s contain compartment r and let (ap; out/aq;
in) belong to the set of rules associated to r. The set of instructions of M will
then contain a sequence of p instructions decreasing the value of register r and
increasing the one of register s followed by a sequence of q instructions decreasing
the value of register s and increasing the one of register r. If the simulation of
the whole rule cannot be performed, then M restores the content of the registers

(this can be done keeping track in the finite states of how far the simulation of
a rule went) and M goes on trying to simulate another rule. The machine M
tries to simulate all the rules in sequence and, if possible, a rule is simulated at
most once in such a cycle (this is because Π works under maximal strategy). If
in one cycle none of the rules could be simulated (again, the finite number of
states can keep track of this), then M goes into its final state. ¤

We do not know if 2n + 4 is the minimum number of compartments needed
for the P systems in Theorem 4 to simulate restricted register machines with
n registers. Anyhow, as these P systems have a constant number of only one
symbols, it is unlikely that such a P system with a number of compartment
independent from n could simulate restricted register machines with an arbitrary
number n of registers.

So, knowing Theorem 4 and that restricted register machines induce an infi-
nite hierarchy on the number of registers, we feel confident to say that:

Corollary 2. P systems with symport/antiport operating under maximal strat-
egy, using a constant number of occurrences of only one symbol induce an infinite
hierarchy on the number of compartments.

4 Purely multi-catalytic P systems

In this section show how unique-sum sets can be used with purely catalytic P
systems using only one symbol. It is important to notice that if a purely multi-
catalytic P system has only 1 occurrence of each catalyst in each compartment
(as in the systems considered in the present section), then maximal strategy
and maximal parallelism coincide. Anyhow, in the following we only mention
maximal strategy.

Theorem 5. Any accepting register machines with n registers can be simulated
by an accepting purely multi-catalytic P system operating under maximal strat-
egy, using only one symbol and with degree 2n + 3.

Proof. Let M = (S, I, s1, sf) be an accepting register machine with n registers:
γ1, . . . , γn. We define the purely multi-catalytic P system

Π = ({a}, C, µ, L2, R1, . . . , R2n+3, 2)

where:
C = {c1, c∞, c∞′} ∪ {cj , cj′ , c

(1)
j′ , c

(2)
j′ | 2 ≤ j ≤ n + 1};

µ =
2

2′
. . .

n+1
n+1′

∞ ∞′
1

;

L1 = af(s1);
L2 = a2val(γ1);
Lj+1 = φ, 2 ≤ j ≤ n;
L′j+1 = φ, 1 ≤ j ≤ n;
L∞ = L∞′ = φ;

R1 = {1 : c1a
f(p) → c1a

f(q)(a2, int′) | (p, γ+
t , q) ∈ I}∪

{2 : c1a
f(p) → c1a

f(1)(q)(ab(t), int′),
3 : c1a

f(1)(q) → c1a
f(2)(q),

4 : c1a
f(2)(q)+b(t)+2 → c1a

f(q),

5 : c1a
f(p) → c1a

f(3)(p),

6 : c1a
f(3)(p) → c1a

f(1)(q)(b(t), int′) | (p, γ−t , q) ∈ I}∪
7 : {c1a

f(p) → c1a
f(4)(q)(ab(t), int′),

8 : c1a
f(4)(q) → c1a

f(5)(q)(ab(t), int′),
9 : c1a

f(5)(q)+b(t)+2 → c1a
f(6)(q)(b(t), int′),

10 : c1a
f(6)(q)+b(t)+2 → c1a

f(7)(q)(b(t), int′),
11 : c1a

f(7)(q)+b(t)+2 → c1a
f(8)(q),

12 : c1a
f(8)(q)+b(t)+2 → c1a

f(q) | (p, γ=0
t , q) ∈ I}∪

{13 : c1a
f(sf) → c1(af(sf), out), 14 : c′1a → c′1(a, in∞′)};

R∞′ = {15 : c∞′a → c∞′(a, in∞)},
R∞ = {16 : c∞a → c∞(a, out)},
Rj′ = {17 : ct′a

2 → ct′(a2, inj),
18 : ct′a

b(t)+2 → ct′(ab(t)+2, out),
19 : c

(1)
t′ ab(t) → c

(1)
t′ (ab(t), out),

20 : c
(1)
t′ a2 → c

(1)
t′ (a2, inj),

21 : c
(1)
t′ ab(t)−2 → c

(1)
t′ (ab(t)−2, out),

22 : c
(2)
t′ a2 → c

(2)
t′ (a2, out)}

Rj = {23 : cta
2 → ct(a2, out)},

This proof requires the use of a unique-sum set U with at least n + 9|S|+ 1
elements. Different multiplicities of a, where the multiplicities are elements in U ,
are associated with each of the registers and instructions of M. This is performed
by the function b : {1, . . . , n} → U and the nine functions f, f (1), . . . , f (8) all from
S to U , all injective and with disjoint values. The exact definition of these ten
functions is irrelevant for the proof, the only thing that is essential is that the
different elements of U are at least 3 units apart from each other. The reason
for this requirement is explained in the following.

The simulation performed by the P system Π is strongly based on the use
of a unique-sum set and on the property that for such sets none of the elements
can be obtained as a linear combination of the remaining elements in the set.
During the computation of Π, different occurrences of the symbol a are present
in the skin compartment. Specific sequences of applied rules allow Π to simulate
instructions of M . Other sequences of applied rules let Π to never halt.

If rule 14 is applied, then an infinite loop, given by the repeated application
of rules 15 and 16 starts. If this happens, then Π never halts.

The compartments 2 ≤ j, j′ ≤ n + 1, in Π are associated in a unique way
to the registers of M . If during a simulation, register γj contains the value
val(γj), then the sum of the occurrences of the symbol a present in j and j′ is
2val(γj). The addition of 1 to register γj is then simulated with the addition of

two occurrences of a to compartment j′. The subtraction of 1 from register γj

is simulated with the removal of two occurrences of a from compartment j′.
During the simulation, if compartment j′ contains at least 2 occurrences

of a, then either rule 17 or rule 20 can be applied. The passage of a2 from
compartment j to compartment j′ is performed by the application of rule 23.
This means that if both compartments j and j′ contain at least 2 occurrences
of a, then these occurrences keep been moved to j′ and j, respectively. In the
following description we avoid to repeat that the application of these rules can
take place during the simulation of the instructions of M .

If the skin compartment has f(s) occurrences of a, then Π simulates M being
in state s.

The simulation of instructions of the kind (p, γ+
t , q) is performed by the

sequential application of rule 1 and then either rule 17 or 20. In this way the
number of occurrences of a in the skin compartment changes from f(p) to f(q),
indicating that Π simulates the state change of M from p to q, and 2 occurrences
of a pass to compartment t′ and then to compartment t, simulating the addition
of 1 unit to register γt.

To describe the simulation of instructions of the kind (p, γ−t , q) we have to
consider different configurations of t and t′ when rule 2 is applied:

i) a2 is present in t′ and ak, k ≥ 2, k even, is present in t;
ii) a2 is present in t′ and t does not contain any a;
iii) t′ does not contain any a and t contains a2.

Because of rules 17, 20 and 23, it cannot be that when t′ does not contain
any a, t contains more than 2 occurrences of a.

In the following rule numbers in parenthesis denote that the rules are applied
in parallel. The simulation of such instructions can non-deterministically start
with either rule 2 or rule 5. If it starts with rule 2 and Π is in configuration ii,
then the applied rules are (2, 17) (or (2, 18)) followed by (3, 19, 23) (or (3, 17,
20, 22, 23), or (3, 17, 21, 23)). In all these cases, rule 4 cannot be subsequently
applied and Π starts an infinite loop. Similarly, if the simulation starts with
rule 5 and Π is in configuration iii. In the other cases the simulation of the
instruction can be completed.

Now we describe these possibilities one by one.
If Π is in configuration i, then (2, 17, 23) can be applied. When this happens

compartment t′ has b(t)+2 occurrences of a. If now rules (3, 18, 23) are applied,
then in the following configuration rules (4, 17), and eventually also 23, can be
applied. This is a simulation of (p, γ−t , q).

When ab(t)+2 is present in t′, then other groups of rules can be applied in
parallel. It is important to notice that maximal strategy forces all these b(t) + 2
occurrences of a to be subject to a rule. For instance, it can be that (3, 17,
19, 23) are applied. If this occurs, then, as rule 3 cannot be applied, rule 14 is
applied starting in this way an infinite loop.

If Π is in configuration iii, then (2, 23) can be applied. What can happen
next is similar to what just described.

If Π is in configuration ii, then rules (2, 17) are applied. When this happens
b(t) occurrences of a are present in t′ and the applied rules let Π start an infinite
loop.

If Π is in configuration i, then (5, 17, 23), (6, 17, 23) can be applied. When
this happens compartment t′ has b(t) + 2 occurrences of a and the simulation
can go on as described in the above.

If Π is in configuration ii, then rules (5, 17), (6, 23) can be applied, again
b(t)+2 occurrences of a and the simulation can go on as described in the above.

If Π is in configuration iii, then rules (5, 23) can be applied. When this
happens b(t) occurrences of a are present in t′ and the applied rules let Π start
an infinite loop.

The simulation of instructions of the kind (p, γ=0
t , q) can start while t and t′

are in one of the following configurations:

iv) a2 is present in t′ and at least a2 is present in t;
v) a2 is present in t′ and t does not contain any a;
vi) t′ does not contain any a and t contains a2;
vii) both t and t′ do not contain any a.

Only configuration iv can let Π not to end up in an infinite loop. We describe
this simulation with a detailed description using a graphical representation of
the compartments in Π. Here we indicate only the compartments and symbols
relevant for the considered explanation.

t
t′
ac(p)

1

⇒7 t
ab(t)

t′
ac(4)(q)

1

⇒8,17,21

a2
t
ab(t)

t′
ac(5)(q)+b(t)−2

1

⇒9,17,21,23

a2
t
ab(t)+2

t′
ac(6)(q)+b(t)−2

1

⇒10,18,23

t
ab(t)+2

t′
ac(7)(q)+b(t)+2

1

⇒11,18 t
t′

ac(8)(q)+b(t)+2

1

⇒12

t
t′
ac(q)

1
In the above simulation many other sequences of configurations could occur

but none of them would lead the system to a halt. For instance, instead of
applying rules (8, 17, 21) the rules (8, 19) or (8, 17, 20, 22) could be applied but
in both cases the computation would go on forever.

The reason why we ask that the elements of U are at least 3 units apart
from each other is that because some configurations see ‘spare’ a’s present in
the skin compartment. For instance, in the above when rule 1 is applied the skin
compartment contains ac(q)+2. If the elements of U were not at least 3 units
apart from each other there could be a rule using the number of occurrences of
a’s together with other a’s present in the skin compartment. The application of
this rule could let Π not to simulate M . As we ask the elements of U to be at
least 3 units apart from each other, then this cannot happen.

When only f(sf) occurrences of a are present in the skin compartment, then
the application of rule 13 halts the computation.

The simulation of M is faithful, that is Π cannot simulate sequences of
instructions that cannot be performed by M . This means that if Π starts with a
configuration in which af(s1) is present in the skin compartment and a2val(γ1) is
present in compartment 2, then Π halts with no a’s in any of its compartments
if and only if M would reach the final state with all registers empty if it started
from the configuration (s1, val(γ1), 0, . . . , 0).

It is important to notice that the presence of catalysts is essential. If they
were not present, then, for instance, rules 17 and 20 would be equal. Moreover,
the fact that different rules in the same compartment share the same catalyst (as,
for instance, rules 20 and 21) does not allow these rules to be used at the same
time. It is also fair to say that not all catalysts used in this proof are needed. For
instance, the ones in the j, 2 ≤ j ≤ n, compartments can be removed without
any effect on the result (if one keeps maximal strategy as operational mode). As
our aim was not to minimise the number of rules using catalysts, we let all rules
to have catalysts. ¤

Considering Theorem 5 and Proposition 1, we have:

Corollary 3.

N1aO1P9(pmcat15)ms = N1RE;

NaO1P9,−c(pmcat15)ms = N RE;

N1aO1P7(pmcat11)ms = N1RE if a specific input format is used;

NaO1P7,−c(pmcat11)ms = N RE if a specific input format is used;

NaO1P5,−c(pmcat7)ms ⊇ N REG.

5 Final remarks

Theorem 3 partially answers suggestion for research 5.3 in [6] and a problem in
[11].

The suggestion for research in [6] proposed to understand why maximal par-
allelism was needed for a model of P systems to have a computational power
equivalent to the one of partially blind register machines. Here we proved that
increasing the number of compartments, these devices can simulate program
machines.

The problem in [11] asked to investigate weather P systems with symport/
antiport using only one symbol and operating under maximal parallelism are
universal. Theorem 3 proves that when these devices operate under maximal
strategy they are indeed universal. We were not able to prove if the same holds
when maximal parallelism is in place.

It is worth saying that studies of different operational modes are present in
[6, 4].

We also did not succeed in determining the power of the P systems considered
in Theorems 3 and Theorem 5 when they operate in a sequential (asynchronous)
mode.

Acknowledgements

We thankfully acknowledge the feedback Oscar Ibarra and one anonymous ref-
eree provided to previous versions of the present paper.

References

1. A. Alhazov and R. Freund. P systems with one membrane and symport/antiport
rules of five symbols are computationally complete. In M. A. Gutiérrez-Naranjo,
A. Riscos-Núñez, F. R. Romero-Campero, and D. Sburlan, editors, Proceedings of
the Third Brainstorming week on Membrane Computing. Sevilla, Spain, January
31 - February 4, 2005, pages 19–28. Fénix Editoria, Sevilla, 2005. Available from
[20].

2. A. Alhazov, R. Freund, and M. Oswald. Symbol/membrane complexity of P sys-
tems with symport/antiport. In R. Freund, G. Lojka, M. Oswald, and G. Păun,
editors, Membrane Computing. 6th International Workshop, WMC 2005, Vienna,
Austria, July 18-21, 2005, Revised Selected and Invited Papers, volume 3850 of
LNCS, pages 96–113. Springer-Verlag, 2005.

3. Ja. M. Barzin’. On a certain class of Turing machines (Minsky machines). Algebra
i Logika, 1(6):42–51, 1962/1963. (in Russian) MR 27 #2415.

4. R. Freund and S. Verlan. A formal framework for static (tissue) P systems. In
G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing. 8th International Workshop, WMC 2007, Thessaloniki, Greece,
June 2007, Revised Selected and Invited Papers, volume 4860 of LNCS, pages 271–
284. Springer-Verlag, 2007.

5. P. Frisco. On s-sum vectors. Technical report, Heriot-Watt University, 2008. HW-
MACS-TR-0058, available at
http://www.macs.hw.ac.uk:8080/techreps/build table.jsp.

6. P. Frisco. Computing with Cells. Advances in Membrane Computing. Oxford Uni-
versity Press, 2009.

7. P. Frisco. Conformon P systems and topology of information flow. In G. Păun, ed-
itor, Membrane Computing. 10th International Workshop, WMC 2009, Curtea de
Arges, Romania, August 24-27, 2009, Revised Selected and Invited Papers, volume
5957 of LNCS, pages 30–53. Springer-Verlag, 2009.

8. S. A. Greibach. Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7:311–324, 1978.

9. J. E. Hopcroft and D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

10. O. H. Ibarra. On membrane hierarchy in P systems. Theoretical Computer Science,
334:115–129, 2005.

11. O. H. Ibarra and S. Woodworth. On symport/antiport P systems with small
number of objects. International Journal of Computer Mathematics, 83(7):613–
629, 2006.

12. O. H. Ibarra, H.-C. Yen, and Z. Dang. On various notions of parallelism in P
systems. International Journal of Foundations of Computer Science, 16(4):683–
705, 2005.

13. M. L. Minsky. Computation: Finite and Infinite Machines. Automatic computa-
tion. Prentice-Hall, 1967.

14. A. Păun and G. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3):295–306, 2002.

15. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000.

16. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.
17. G. Păun, J. Pazos, M. J. Pérez-Jiménez, and A. Rodriguez-Paton. Sym-

port/antiport P systems with three objects are universal. Fundamenta Informati-
cae, 64:1–4, 2005.

18. G. Păun, G. Rozenberg, and A. Salomaa, editors. The Oxford Handbook of Mem-
brane Computing. Oxford University Press, 2010.

19. Z. Qi, J. You, and H. Mao. P systems and petri nets. In C. Mart́ın-Vide, G. Mauri,
G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing. Interna-
tional Workshop, WMC 2003, Tarragona, Spain, July 17-22, 2003, Revised Papers,
volume 2933 of LNCS, pages 286–303. Springer-Verlag, 2004.

20. The P Systems Webpage. http://ppage.psystems.eu/.

