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Abstract. In this article, we consider spiking neural P systems without
delay with specific restrictions on the types of neurons. Two neurons are
considered to be of the same type if the rules, the number of spikes in the
initial configuration, and the number of outgoing synapses are identical.
We show that we are able to achieve computational completeness in both
the generating and the accepting case with only two types of neurons,
where the number of neurons with unbounded rules is constant (and even
minimal).

1 Introduction

Spiking neural P systems, introduced by Ionescu et al. in [3], are a special class
of P systems (see [7], [8], [12]) inspired by the working of the (human) brain. In
spiking neural P systems, the cells represent neurons, which are connected by
synapses. Spiking neural P systems have only one symbol, the spike, multiple
copies of which can be sent (“fired”) from neurons via synapses to other neurons
or simply “forgotten” (i.e., removed). The exchange of spikes is regulated by
firing and forgetting rules in the neurons.

The problem which “ingredients” are needed to achieve computational com-
pleteness or universality with spiking neural P systems has been a challenging
question since the introduction of this kind of systems. Several answers have
been given, for instance showing that many additional conditions such as delays
can be left off [2] or that a limited number of rules per neuron suffices [1], [5], or
giving universal P systems with a small number of neurons [6], [11].

Recently, Zeng et al. [10] have considered homogeneous spiking neural P
systems, i.e., P systems where the rules in every neuron are identical. However,
to achieve universality in this model, some extra conditions such as delays are
required.

In our paper, we consider spiking neural P systems with only two types of
neurons, without using delays. We consider two neurons to be of the same type



if the rules, the number of spikes in the initial configuration, and the number
of outgoing edges (synapses) are identical. We show that we are able to achieve
computational completeness both in the accepting and in the generating case.
Moreover, we are able to give a constant (even minimal) bound on the required
number of neurons with unbounded rules.

The rest of the paper is organized as follows: in the next section, we consider
some basic formalisms from formal language theory and give the definition of
spiking neural P systems. In Section 3 we present our results regarding compu-
tational completeness. Finally, we conclude the paper with a short summary of
the results obtained in this paper and some interesting open questions for future
research.

2 Definitions

The reader is assumed to be familiar with basic notions of formal language theory
(see, for instance, [9]).

In the following, by NRE we denoe the family of recursively enumerable
sets of natural numbers. For a regular expression E, the corresponding regular
language is denoted by L(E).

A nondeterministic register machine is a construct M = (n, B, p0, ph, I)
where

1. n, n ≥ 1, is the number of registers,
2. B is the set of instruction labels,
3. p0 is the start label,
4. ph is the halting label (only used for the HALT instruction), and
5. I is a set of (labeled) instructions, where every i ∈ I is of one of the following

forms:
– pi : (ADD(r), pj , pk) increments the value in register r and continues with

one of the instructions labeled by pj and pk, chosen in a nondeterministic
way,

– pi : (SUB(r), pj , pk) tries to decrement the value in register r; if the
register was non-empty before the instruction, the value in the register is
decremented and the computation continues with the instruction labeled
by pj , if not, the value in the register is not changed and the computation
continues with the instruction pk;

– ph : HALT halts the machine.

As the only nondeterminism occurs in the ADD-instructions, we can easily
construct deterministic register machines by imposing the condition pj = pk. In
this case, we write pi : (ADD(r), pj). We will be using nondeterministic register
machines as generators and deterministic register machines as acceptors.

A deterministic register machine accepts a natural number by starting with
the number as input in the first register, with all other registers being empty.
Starting from the instruction labeled with p0, the instructions are applied and
the contents of the registers is changed; if and when the machine reaches ph



and therefore halts, the number is accepted. Register machines can accept all
recursively enumerable sets of natural numbers with three registers (see, for
instance, [4]).

In the generating case, the (now nondeterministic) register machine starts
with empty registers at the initial instruction p0. When the machine halts, the
contents of the first register forms the result. Every recursively enumerable set
of natural numbers can be generated with only three registers, where the first
register is never decremented [4].

2.1 Spiking Neural P Systems

A spiking neural P system (without delays) is a construct

Π = (O, ρ1, ..., ρn, syn, in, out)

where

1. O = {a} is the (unary) set of objects (the object a is called spike),
2. ρ1, ..., ρn are the neurons, where ρi = (di, Ri) for 1 ≤ i ≤ n, with di being

the number of spikes initially present in the neuron i and Ri being the set
of rules, where the rules have one of the following forms:
– E/ai → aj , where E is a regular expression over O and i, j ≥ 1 (firing

rules) or
– ai → λ, where i ≥ 1 (forgetting rules).

There must not be any rule ai → λ such that ai ∈ L(E) for some E of a
firing rule.

3. syn ⊆ {1, ..., n} × {1, ..., n} are the synapses, where (i, j) ∈ syn indicates a
synapse from i to j,

4. in is the input neuron (with the only function to spike once in generating
spiking neural P systems in order to start a computation), and

5. out is the output neuron (no function in accepting spiking neural P systems).

A computation of a spiking neural P system starts from the initial configura-
tion (d1, ..., dn) (di represents the number of spikes in neuron i, 1 ≤ i ≤ n) and
then proceeds by making computation steps until the system halts, i.e., when
in no neuron a rule can be applied any more. With the system being in the
configuration (c1, ..., cn), where ci represents the number of spikes in neuron i,
1 ≤ i ≤ n, a computation step is carried out as follows: in every neuron, one
rule – if possible – is chosen in a nondeterministic way and applied. A firing rule
E/ai → aj ∈ Rk can be applied in neuron k if, for ck = am, ck ∈ L(E) and
m ≥ i, removing i spikes from k and adding j spikes in every neuron l where
(k, l) ∈ syn. A forgetting rule ai → λ can be applied in neuron k if and only if
ck = ai; such a rule removes all spikes from the neuron.

Per step and neuron, only one rule may be applied. This is in contrast to other
variants of P systems, which usually utilize the maximally parallel mode (where
as many rules as possible are applied in parallel). As spiking and forgetting rules
are mutually exclusive, the only way a nondeterministic computation step may



happen is by the existance of two rules where the languages generated by their
regular expressions have a non-empty intersection and the number of fired spikes
is not equal.

A spiking neural P system inputs and outputs numbers via a spike train. A
spike train starts with a spike given in step t1 and ends with a spike given in
step t2. The number is specified by t2 − t1 − 1, i.e., the number of steps that
elapse between the two spikes. It accepts an input by a series of configurations,
starting from the initial configuration and ending in a halting configuration.

Rules of the form E/ai → aj where L(E) is finite (infinite) are called bounded

(unbounded) rules.
Two neurons ρi and ρj are of the same type if and only if Ri = Rj , di = dj

and |{(i, k) ∈ sym | k ∈ {1, ..., n}}| = |{(j, k) ∈ sym | k ∈ {1, ..., n}}|.
The families of sets of natural numbers generated/accepted by spiking neural

P systems with at most k types of neurons and at most m neurons containing
unbounded rules are denoted by

NSNgenP∗ (typesk, unboundedm) and NSNaccP∗ (typesk, unboundedm) ,

respectively.

3 Results

Theorem 1. Accepting spiking neural P systems without delays with only two

types of neurons and only three neurons containing unbounded rules are compu-

tationally complete, i.e.,

NSNaccP∗(types2, unbounded3) = NRE.

Proof. We prove computational completeness by simulating deterministic regis-
ter machines with three registers, where the first one is the input register. We
use two types of neurons, where neurons of type 1 are responsible for most of the
computations, and neurons of type 2 are equivalent to registers (if the register
r contains the value i, the neuron r contains 2i spikes). Therefore, only three
neurons of type 2 (containing unbounded rules) are required, whereas we have
an unbounded number of neurons of type 1 (only containing bounded rules).
Both types have exactly two outgoing synapses and λ (i.e., no spike) in the ini-
tial configuration. The two types of neurons and their ingredients are shown in
Figure 1.

In the following, we will denote cells of type 1 by squares and cells of type 2
by dashed squares without giving the rules or the initial configuration again.

As all neurons have an out-degree of two and the generation of additional
spikes is only possible with extra steps, it is sometimes necessary to utilize
dummy neurons. A dummy neuron structure takes in one spike and forgets it.
In the following, we will not explicitly give dummy neurons; rather, if a neuron
has an out-degree of less than two, we implicitly assume that the out-degree can
be extended with dummy neurons.



λ

a/a → a

a2 → λ

a3/a3 → a

a4/a4 → a

a5 → λ

Type 1

λ

a → λ

a3(a2)∗/a3 → a

Type 2

Fig. 1. The two types of neurons used in the proof of Theorem 1
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Fig. 2. A dummy neuron structure

When a spike enters the neuron d1, it triggers the rule a/a → a, which causes
the neuron to spike into the neurons d2 and d3, which both fire into the neurons
d4 and d5, thus giving two spikes in both of these neurons, which are forgotten
by the rule a2 → λ. As the neurons d4 and d5 never spike, the synapses from
the neurons d4 and d5 back to the neurons d2 and d3 have no effect.

The simulation of an ADD instruction pi : (ADD(r), pj) is accomplished by the
neuron structure as shown in Figure 3:

When a spike enters the neuron pi1 , the simulation of the instruction is
started. The neuron fires and sends a spike into pi2 and pi3 , which fire two
spikes into r (thereby increasing the value in register r by 1) and one spike
into the neuron structure for pj (to start the simulation of the instruction pj).
Therefore, the simulation of an ADD-instruction requires three neurons and two
steps.

For SUB-instructions, we do not consider the instructions individually; rather,
we construct a structure responsible for all SUB(r)-instructions. In the following,
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Fig. 3. A neuron structure simulating an ADD-instruction

we will denote the SUB-instructions for some register r by pi : (SUB(r), pis
, pif

)
for 1 ≤ i ≤ n, where the pi are the instructions, the pis

are the follow-up in-
structions in case of success (i.e., when the register is non-empty) and the pif

the
follow-up instructions in case of failure (i.e., when the register is empty). Figure 4
illustrates the neuron structure needed for the simulation of SUB(r)-instructions;
pi denotes the instruction currently being executed and n the number of SUB(r)-
instructions.

In this diagram, only one possible instruction is described in detail. The spike

from register r has to be forwarded to all possible p′j1 (for this, ⌈√n⌉(⌈√n⌉−1)
2

neurons are needed) and the spike for the instruction needs to be delayed until
this spike arrives (using 2(⌈√n⌉ − 1) cells).

When the simulation of the instruction starts, one spike is sent into the
neuron representing register r. If the register is empty (i.e. the neuron contains
no spike), the spike is forgotten by the rule a → λ, if not, the rule a3(a2)∗/a →
a removes two spikes (thus decrementing the value in the register) and fires
one spike. However, as the register does not know which instruction caused the
subtraction, this spike is forwarded to all possible instructions. In parallel, one
spike is fired by the instruction neuron, to be duplicated and forwarded to the
neuron of the instruction. To make sure that the spikes from the register and
the spikes from the instruction reach the register at the same time, the two
spikes from the instruction neuron (after duplication) are delayed by additional
neurons of type 1.

Finally, the neurons p′if
and p′is

act as “gatekeepers” of the respective in-
structions.

The neuron p′is
corresponding to the current instruction receives two spikes.

If the subtraction succeeded (i.e., if the register was non-empty), every neuron
p′is

receives two spikes. If only two spikes are present (i.e., if the neuron belongs
to a different instruction or the operation was not successful), they are forgotten
by the rule a2 → λ; otherwise, four spikes are in the neuron, which causes it
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Fig. 4. A simplified diagram of a SUB-instruction neuron structure

to fire by the rule a4/a4 → a and therefore to start the simulation of the next
instruction pis

.

Moreover, the neuron p′if
receives three spikes from the current instruction,

which causes it to fire if the subtraction did not succeed and therefore to start
the simulation of the next instruction pif

; if the subtraction succeeded, two
additional spikes are sent from the register, triggering the forgetting rule a5 → λ.
If only these two spikes representing a successful subtraction are sent in, the
forgetting rule a2 → λ can be applied and removes them.

The simulation of a SUB-instruction takes 5 + (⌈√n⌉ − 1) steps and 15 +

(⌈√n⌉−1) neurons (not counting dummy structures). Additionally, ⌈√n⌉(⌈√n⌉−1)
2

neurons for every register are needed, where n is the number of SUB-instructions
that affect this register.

The HALT-instruction is represented by a dummy structure, which consumes
the spike, thus ending the computation of the P system.

Finally, we consider the input to be given by two spikes: one in the first step
and one in the n + 2th step, where n is the input number. The neuron structure



as depicted in Figure 5 puts 2n spikes into the input register ri and one spike
into the first neuron of the neuron structure simulating the initial instruction
p0.
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Fig. 5. The neuron structure initializing the computation

When the first spike enters the system, thereby starting the spike train, it
initializes the two loops and puts one spike into the register (which is forgotten
because of the rule a → λ). Per step, the first loop (neurons i3 and i4) puts
two spikes into the register, thereby increasing the count by 1. The second loop
(neurons i11 and i12) puts two spikes into an intermediate neuron i13 (where
they are forgotten immediately).

After the second spike has entered, the loops stop (as the loop cells now
contain two spikes, and the forgetting rules a2 → λ can be applied), another
single spike is fired into the register (as the input is the number of steps between
the two spikes, but the loop runs one more time, it is necessary to decrement
the register once) and four spikes enter i14, thus causing it to fire a spike into
the structure simulating the first instruction p0.

We observe that on any number as input, the spiking neural P system halts if
and only if the corresponding register machine halts. This observation concludes
the proof. �



Theorem 2. Generating spiking neural P systems without delays with only two

types of neurons and only three neurons containing unbounded rules are compu-

tationally complete, i.e.,

NSNgenP∗(types2, unbounded3) = NRE.

Proof. Our construction is similar to the proof given for Theorem 1. However, we
need to simulate nondeterministic register machines here, so we need to modify
the simulation of ADD-instructions. To be able to simulate nondeterminism, we
introduce two additional rules to the neuron type 1 (see Figure 6), which allows
for the nondeterministic simulation of an instruction pi : (ADD(r), pj , pk) (see
Figure 7).

λ

a/a → a

a2 → λ

a3/a3 → a

a4/a4 → a

a5 → λ

a6/a6 → a

a6/a6 → a2

Type 1

λ

a → λ

a3(a2)∗/a3 → a

Type 2

Fig. 6. The two types of neurons used in the proof of Theorem 2

After the instruction has been executed, the neuron pi18 contains six spikes,
which nondeterministically triggers one of the rules a6/a6 → a and a6/a6 → a2.
If the first rule is executed, the instruction pj immediately follows; otherwise,
the instruction pk is executed. (This construction is vaguely similar to the one
used for SUB-instructions; however, in this case, both input spikes come from
the same source.) This simulation requires 22 neurons per ADD-instruction and
is executed in seven steps.

The simulation of SUB-instructions is exactly as in the proof given in the proof
of the previous theorem. However, we do not need to consider SUB-instructions
for the output register 1, as we can assume that this first register is never decre-
mented.

To start a computation, the input neuron has to receive a spike from the
environment, which then is immediately sent to the first neuron of the neuron
structure simulating the initial instruction p0.

When the machine halts with the HALT-instruction, we still have to output
the result as a spike train. As the first register is never subtracted from during
the simulation of the register machine, we can construct the output structure as
shown in Figure 8:

The basic mechanism of the output structure is as follows: the system spikes
if and only if there was no spike from the current subtraction from the register



pi1

pi2 pi3

��	 @@R

r

@@R ��	

pi4 pi5

pi6 pi7 pi8 pi9

pi10 pi11 pi12 pi13 pi14 pi15 pi16 pi17

pi18

pi19 pi20

��
��

pj

pi22pi21

?

��
��
pk

?
6

J
JĴ
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Fig. 7. A neuron structure simulating an ADD-instruction

or from the last subtraction from the register. This is the case at the begin-
ning (where there is no preceding subtraction) and at the end (when the last
subtraction cannot be executed, as the register is empty). The number of steps
between these two spikes is always the number in the register minus one (or, if
the register was empty, there would be only one spike). Therefore, we need to
increment the register (by adding two spikes) before starting the output.

We observe that the output of the spiking neural P system (given by the
spike train) is equivalent to the output of the corresponding register machine
(given by the value in the first register upon halting). Finally, we remark that
only three neurons (representing the registers) are of type 2 (and only neurons
of this type contain unbounded rules). This observation concludes the proof. �

4 Conclusions

By using the characterization of types (where two neurons are of the same type
if the rules, the initial configuration, and the number of outgoing synapses are
identical), we were able to show that for obtaining computational completeness
only two types of neurons are needed, where only the second type of neurons
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contains unbounded rules. We also showed that three neurons of the second type
are enough, which already is the minimal number needed anyway as registers
can only be represented by neurons with unbounded rules; however, the number
of neurons of the first type could not be bounded.

Interesting questions for further research remain, such as:

– Which ingredients are needed to generalize the results for recursively enu-
merable sets of vectors of natural numbers?

– Which changes in the constructions of the proofs elaborated in this paper are
necessary if the input (in the accepting case) or the output (in the generating
case) are initially (finally) given as contents of an unbounded input (output)
neuron?

– To which number of neurons with unbounded rules can the constructions
in the proofs elaborated in this paper be reduced when simulating universal
register machines (using spike trains with three spikes to introduce the code
of the machine to be simulated as well as its input)?

– For all these variants of spiking neural P systems without delay, is one type
of (unbounded) neurons sufficient?
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