
Design Pattern-Based Solutions for General

Membrane System Components

Ionuţ Dincă

University of Pitesti
110040 Pitesti, Targu din Vale, nr.1, Romania

E-mail: ionutdinca 24@yahoo.com

Abstract. The software solutions for membrane computing simulators
must be in accordance with the fast evolving of this research area. There-
fore, we need solutions for designing extensible and highly maintainable
software components. The main objective is to find design pattern-based
solutions in the process of designing a general membrane systems frame-
work for easily creating P systems simulators for any existing or future
model. There are used design patterns as Abstract Factory, Decorator,
Observer, and Strategy. The solutions are presented using Unified Model-
ing Language diagrams (class diagrams for static structures and sequence
diagrams for dynamic aspects).

Keywords: extensible component, design pattern, membrane comput-
ing, membrane structure, evolution rule.

1 Introduction

Gh. Păun said about membrane computing (in his book from [4]) the following:
”The framework is rather general and versatile - compartmental computation,
with the separate ”processors” communicating in various ways, synchronized,
non-deterministic, parallel, dealing with multisets - and this makes a non-limited
range of branches, analogies, cooperation with other areas, and applications pos-
sible.” The starting point of our approach is coming from his assertion.

The implementation of a P system model involves the same basic steps as
the construction of any other application. This includes deciding what the ap-
plication’s key requirements are, designing a solution that will satisfy all the
requirements, and developing the application. The current membrane systems
implementations are mostly designed for a particular family of membrane sys-
tems (see [3, 8] for a list of existing applications). A designer would implement
a membrane system simulator based on a set of requirements that is considered
to be complete. Later during a refactoring phase it would frequently be the case
that requirements are expanded or changed. If the underlying structure of the
membrane system model needs to change (like a change in topology of the mem-
brane network, syntax or semantics of the evolution rules, data input format,
the computation strategy, or any other variation), the designer has to change
the current program source code.

The rapid development and enlargement of the research in membrane com-
puting impose designing of an extensible, flexible and highly maintainable soft-
ware system. The design should be specific to the problem at hand but also
general enough to address future problems and requirements. The key to maxi-
mizing extensibility and flexibility of a software system lies in anticipating new
requirements and changes to existing requirements, and in designing out system
so that they can evolve accordingly. A design that doesn’t take changes into
account risks major redesign in the future.

Challenges such as those mentioned above occur because all components
in a membrane system are functionally very tightly coupled. In such domain
problem it is not easy to define levels of abstraction and to separate the system
functionality cleanly into those layers. Therefore, extensible design solutions for
a general membrane systems framework seems to be useful from the perspective
mentioned above.

The main objective of the present paper is to show how can be used object
oriented design patterns in the process of designing an effective general mem-
brane systems framework, using the conceptual breakdown as requirements. Such
a framework could be used to easily create P systems simulators for any existing
model. There are used several design patterns (Abstract Factory, Decorator, Ob-
server, Strategy) for solving specific design problems (see [2] for an introduction
to design patterns).

2 Designing for a Large Number of Extensions

When trying to design a solution for solving a real world problem, abstraction
serves as a way to model the problem. For us, the world is represented by mem-
brane systems, and the model is a collection of objects. Object-oriented systems
are made up of objects. The hard part about object-oriented design is decom-
posing a system into objects. Object-oriented design methodologies favor many
different approaches. We can use the textual analysis of the requirements, single
out the nouns and verbs, and create corresponding classes and operations. Or we
can focus on the collaborations and responsibilities in our system, and create the
so called CRC (Class-Responsibilities-Collaborations) cards. Or we can model
the real world and translate the objects found during analysis into design (see
[1, 7]).

Many objects in a design come from the analysis model. We presents here an
abstraction (see Figure 1) obtained by analyzing the main P Systems ingredients
and having in mind two of the most essential principles of extensible object
oriented design: Open-Closed Principle and Dependency Inversion Principle.

The first principle says: Software entities should be open for extensions but

closed for modifications. The addition of new functionality or the modification of
an existing one is called an extension. An extensible component is a component
for which the functionality could be extended with minimal modifications of
current implementation. Therefore, the main objective is to design components
that conform to this principle. The key to achieve extensibility for a software

system is in anticipating the possibly new requirements and changes to existing
requirements (finding the possible extension points of the requirements). The
membrane computing area deals with (at least) the following extensions:

– the topology of membrane structure (a tree as in cell like models, a net of
membranes as in Tissue models);

– the type of evolution rules (rewriting rules, communication rules, etc.);
– the type of data input (multiset of symbols, strings);
– the type of membranes (electrically charged or neutral, permeable or not,

dissolvable or not, divisible or not etc.);
– the type of output (numbers, vector of numbers, strings, multisets, etc.);
– the strategy of applying the rules (maximal parallelism, nondeterministic,

sequential, bounded parallelism, priorities among the rules, the probabilistic
choice of the rules, etc.);

– the visual representation of the system (venn diagram, as a tree, etc.);
– the type of target commands (weak target (in, out), strong in target (inj)).

The second principle offers a solution to obtain the open-closed components:

– A. High-level modules should not depend on low-level modules. Both should

depend on abstractions.

– B. Abstractions should not depend upon details. Details should depend upon

abstractions.

Otherwise stated, don’t declare variables to be instances of particular con-
crete classes. Instead, commit only to an interface usually defined by an abstract
class. All classes derived from an abstract class will share its interface. There are
two benefits to manipulating objects solely in terms of the interface defined by
abstract classes: (1) Clients remain unaware of the specific types of objects they
use, as long as the objects adhere to the interface that clients expect. (2) Clients
remain unaware of the classes that implement these objects. Clients only know
about the abstract class defining the interface. For our problem, a membrane
only knows about the general evolution rules (abstract class GeneralRule), not
about the particular rules (symport rule, rewriting rule, and so on) which exist
inside the region delimited by it. The immediate advantage is the extensibility:
introducing a new particular form of rules don’t affect the system previously
developed.

The following sections are concerned with design pattern-based solutions for
solving different extensibility design problems.

3 General Creator for General Resources

Our software simulators need to use a variety of different features, in order to
achieve as much generality as possible. We want to make the systems flexible
enough to use resources without having to recode the application each time a
new resource is introduced. An effective way to solve this problem is to define

BoundedNontederminism

RegularMembrane

StrongTarget

CommRule

MultisetObject

RewritingRule

StringObject

PriorityRelations

DeltaRule

DataObject

NumberOutput

TargetCommand

MaximalNondeterminism

ThauRule

GeneralMembraneTopology

TreeTopology

PromotingRule

ElectricalMembrane

OutputData

GeneralRule

VectorOutput

SequentialModel

WeakTarget

DeterministicModel

StringOutput

ParallelModel

ProbabilisticChoice

ThickMembrane

ComputationModel

GraphTopology

GeneralMembrane

InhibitingRule

Fig. 1. The abstraction of membrane computing resources.

a general resource creator, the AbstractFactory (see Figure 2). The factory has
one or more create methods, which can be called to produce generic resources.
At runtime, a concrete factory is created and used by application for building a
particular class of P Systems (see Figure 3). The AbstractFactory class provide
a contract for creating families of related or dependent resources without hav-
ing to specify their concrete classes. This strategy helps to increase the overall
extensibility of software systems. The systems can easily integrate new features
and resources.

+createTopology() : GeneralMembraneTopology
+createRule() : GeneralRule
+createComputationModel() : ComputationModel
+createDataObject() : DataObject
+createOutputData() : OutputData
+createMembrane() : GeneralMembrane

AbstractFactory

+createTopology() : GeneralMembraneTopology
+createMembrane() : GeneralMembrane
+createRule() : GeneralRule
+createComputationalModel() : ComputationModel
+createDataObject() : DataObject
+createOutputData() : DataObject

CellLikeFactory

SimpleRewritingRule

BoundedNontederminism

RegularMembrane

StrongTarget

CommRule

MultisetObject

RewritingRule

StringObject

PriorityRelations

DeltaRule

DataObject

NumberOutput

TargetCommand

MaximalNondeterminism

ThauRule

GeneralMembraneTopology

TreeTopology

PromotingRule

ElectricalMembrane

OutputData

GeneralRule

VectorOutput

SequentialModel

WeakTarget

DeterministicModel

StringOutput

ParallelModel

ProbabilisticChoice

ThickMembrane

ComputationModel

GraphTopology

GeneralMembrane

InhibitingRule

TissueFactory

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

Fig. 2. Factories for creating families of P Systems.

A concrete factory ensures a correct association of resources. For example,
a symport/antiport system associates the communication rules with a normal
membrane.

 :
 M

a
x
im

a
lN

o
n

d
e
te

rm
in

is
m

 :
 S

im
p

le
R

e
w

ri
ti

n
g

R
u

le

 :
 R

e
g

u
la

rM
e
m

b
ra

n
e

 :
 C

e
ll
L

ik
e
F

a
c
to

ry

 :
 N

u
m

b
e
rO

u
tp

u
t

 :
 M

u
lt

is
e
tO

b
je

c
t

 :
 T

re
e
T

o
p

o
lo

g
y

o
b

je
c
t

n
e
w

2
:

n
e
w

4
:

n
e
w

6
:

n
e
w

8
:

n
e
w

1
0
:

n
e
w

1
2
:

[f
o
r

e
a
c
h
 m

e
m

b
ra

n
e
]
c
re

a
te

M
e
m

b
ra

n
e
()

1
:

[f
o
r

e
a
c
h
 r

u
le

]
c
re

a
te

R
u
le

()
3
:

[f
o
r

e
a
c
h
 m

u
lt
is

e
t]
 c

re
a
te

D
a
ta

O
b
je

c
t(

)
5
:

c
re

a
te

T
o
p
o
lo

g
y
()

7
:

c
re

a
te

C
o
m

p
u
ta

ti
o
n
a
lM

o
d
e
l(
)

9
:

c
re

a
te

O
u
tp

u
tD

a
ta

()
1
1
:

Fig. 3. Collaboration for creating cell-like families of P Systems.

4 Extensible Evolution Engine Component by Extensible

Evolution Rules

The evolution rules govern the computations of any membrane system model.
The rules and membrane structure topology are both the main ingredients of
system. A frequent extension point in membrane computing area consists in
changing the syntax and semantic of the evolution rules. Therefore, it is necessary
a special attention in the process of designing a general extensible evolution
engine component. This section discusses solutions for obtaining component that
developers can reconfigure to represent different aspects of execution models with
minimal or no code modifications.

4.1 Decorating Rules With New Responsibilities

The functionality of a rewriting rule can be extended, for example, by considering
the membrane dissolving action. This action is denoted by the symbol δ which
may be added to the rules of a system. That is, the rules can be of the form
u → v, or of the form u → vδ (the symbol is appended to the right-side multiset
of the rule). The application of the rule u → vδ in a region i means to use u → v

in the usual way, then to dissolve membrane i;
Not all the rewriting rules are decorated by symbol δ. We want to dynamically

add such extensions to individual rules, not to all the rules. One way to add new
responsibilities to an object is with inheritance. This is inflexible because the
choice of δ-action is made statically. A client can’t control how and when to
decorate the rewriting rule with the membrane dissolving capability. Decorator
Design Patterns could be used as an extensible and flexible solution for the
above design problem (see Figure 4). The intention of this pattern is to attach
additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to inheritance for extending functionality.

The pattern approach is to enclose the usual rewriting rule object in another
object that adds the δ-action. The new object is called a decorator. The decorator
conforms to the interface of the enclosed object so that its presence is transparent
to the clients (for us, the membranes of the system). Transparency lets us to add
an unlimited number of new responsibilities.

For example, a SimpleRewritingRule object implements an usual rule
u → v. The usual rule is extended with dissolving functionality by DeltaRule

decorator which adds the δ-action. The application of the rule u → vδ is per-
formed by decorator as in Figure 5.

4.2 Different Strategies for Computation Engine

Membrane computations can be simulated by implementing corresponding algo-
rithms which describe the evolution strategy of the systems. The computations
are sequences of configurations. In each time unit a transformation of a configu-
ration of the system takes place by applying the rules in each membrane. There

+execute()

SimpleRewritingRule

+execute()

RewritingRule

-thauAction

+execute()
+doThauAction()

ThauRule

-deltaAction

+execute()
+dissolve()

DeltaRule

+execute()

Decorator

rewritingRule.execute()

Decorator.execute();
this.dissolve();

-rewritingRule

Fig. 4. Extending Rule Functionality by Decorator Pattern.

rewritingRule : SimpleRewritingRule : Decorator : DeltaRuleobject

return4:

execute()3:

return5:

execute()2:

dissolve()6:

execute()1:

Fig. 5. Collaboration for executing δ-action functionality.

are different strategies of applying the evolution rules. The rules can be used in
the maximally parallel manner, sequentially (one rule in the whole system, or
in each region), with a bounded parallelism (k rules in the whole system, or in
each region), with a minimal parallelism (at least one rule is used in each region
where a rule can be used) and so on.

In such cases, Strategy pattern helps us to design the applications so that
the new strategies of applying the rules can be easily added. The pattern repre-
sents the strategies in a separate class hierarchy (see the ComputationStrategy

class and its subclasses from Figure 6). It provides a way to configure
ComputationEngine with one of many concrete strategies. Therefore, the com-
putation engine is an extensible component from this point of view.

+runAll()
+nextConfiguration()
+setStrategy(str : ComputationStrategy)

ComputationEngine

GeneralMembraneTopology

+generateApplicableRules()
+runApplicableRules()
+createNextConfiguration()

MaximalNondeterministicStrategy

+executeMacrostep()
+generateApplicableRules()
+runApplicableRules()
+createNextConfiguration()

ComputationStrategy

+generateApplicableRules()
+createNextConfiguration()
+runApplicableRules()

SequentialStrategy

+generateApplicableRules()
+runApplicableRules()
+createNextConfiguration()

PriorityRelStrategy

ComputationModel

PriorityRelations

Configuration

{
 generateApplicableRules()
 runApplicableRules()
 createNextConfiguration()
}

create

<<use>>

-strategy

<<use>>

Fig. 6. Extensibility for the computation strategy.

5 Representations for Membrane Structure Topology

with Observers

One of the most important aspects to handle in application design is a one-
to-many relationship between components. This situation occurs when a group
of objects (called observers) all depend on the state of a central component
(called the subject). If any change occurs in the subject, each of the observers
needs to be updated. The subject keeps a reference to each of dependants and
then merely updates these observers when the need arises. This is fine for a

static system with few dependants, as the functionality to update change these
objects will not overly complicate the subject and will not change often. There
are shortcomings to this approach:

• If more objects need to be added to the list of observers, code changes in the
subject requires.

• The code to update observers will eventually start having a negative effect
on the subject’s performance if the list of observers becomes large.

• All the dependants are active all the time if the update code is added to
the subject. It can be very tedious or even impossible to change the code to
include only certain dependants at any given stage.

+changeConfiguration()

GeneralMembraneTopology

+attach(o : Observer)
+dettach(o : Observer)
+notifyObservers()

Observable

+changeConfiguration()

TreeTopology

+changeConfiguration()

GraphTopology

+update()

VennDiagramView

+update()

ParentheticView

+update()

TreeView

+update()

Observer

+update()

XMLView

foreach o in observers
 o.update()

notifyObservers()

-observers

Fig. 7. Observers for topology component.

The Observer pattern (see Figure 7) allows a developer to extract the func-
tionality of updating dependants. The only functionality required in the subject
is a notifyObservers()method. When any change that might affect dependants
occurs in the subject, this method needs to be called as well. This method iter-
ates over a list of registered observers (XMLView, VennDiagarmView, TreeView,
ParentheticView) and inform each observer of the update and also allows the
observer to take the corrective action (see Figure 8). This allows any number of
observers to be dynamically registered with the subject, without complicating
the subject’s code.

The membrane structure topology component is the heart of any P systems
implementation. It is suggestive for users to use various representations of this
component: as an XML structure, pictorially by a Venn diagram, a tree, a graph
or a string of matching parenthesis. Therefore, this different representations are
all dependants of the topology subject. The Observer pattern is a flexible and
extensible solution for this design problem.

 : ComputationEngine : VennDiagramView : TreeTopology : TreeView : XMLView

changeConfiguration()4:

attach(o=this)3:

update()5:

update()6:

update()7:

attach(o=this)2:

attach(o=this)1:

Fig. 8. Collaborations for updating various representations of topology.

6 Conclusions

The flexibility and the versatility of the formalism of membrane computing im-
pose designing extensible software components which are capable to handle fu-
ture problems and requirements. The software solutions for membrane comput-
ing simulators must be in accordance with the fast evolving of this research area.
We considered here some of the features of membrane systems and how could
be used object oriented design patterns as design solutions. The research from
this paper is a beginning. The question of considering pattern-based solutions
for other design problems remains to be investigated. For instance, how could
be efficiently extend the design for the P systems with active membrane or P
systems with a probabilistic way of using the rules. Another important objec-
tive of the future research consists in using of a software engineering tool (for
example, Rational Rose generates the implementation’s skeleton using the UML
specification of design) for accelerating the process of implementing the software
components in two different programming languages (Java and C#).

References

1. B. E. Wampler, The Essence of Object Oriented Programming with Java and UML,
Addison Wesley, 2001.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of

Reusable Object-Oriented Software, Addison Wesley, 1995.
3. G. Ciobanu, Gh. Paun, M.J. Perez-Jimenez, eds., Applications of Membrane Com-

puting, Springer-Verlag, 2006.
4. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. Gh. Paun, G. Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane

Computing, Oxford Univ. Press, 2010.
6. I. Dincă, Software Design Patterns for Membrane Systems Simulation, Scientific

Bulletin, University of Pitesti, Mathematics and Computer Science Series, No. 12,
2006, ISSN 1453-116x, pp. 53-64.

7. S. Stelting, O. Maassen, Applied Java Patterns, Prentice Hall, 2001.
8. The P Systems Web Page: http://ppage.psystems.eu/.

