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Abstract. Generalized communicating P systems (GCPSs) are purely
communicating tissue-like membrane systems with rules for moving pairs
of objects. Despite their simplicity, these systems are rather powerful,
they are able to generate any recursively enumerable set of numbers
even having restricted variants of communication rules. In this paper we
show that GCPSs still remain computationally complete if they are given
with a singleton alphabet of objects and with one of the restricted types
of rules parallel-shift, join, presence-move, and chain.

1 Introduction

The notion of a generalized communicating P system was introduced in [14], with
the aim of providing a common generalization of various purely communicating
models in the framework of P systems. The model was inspired by and also cap-
tures important features of several other well-known distributed computational
models.

A generalized communicating P system, or a GCPS for short, corresponds
to a hypergraph where each node is represented by a cell and each edge is
represented by a rule. Every cell contains a multiset of objects which – by com-
munication rules – may move between the cells. The form of a communication
rule is (a, i)(b, j) → (a, k)(b, l) where a and b are objects and natural numbers
i, j, k, l are labels identifying the input and the output cells. Such a rule means
that an object a from cell i and an object b from cell j move synchronously to
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cell k and cell l, respectively. Communication rules can also be interpreted as
interaction rules.

Depending on their form, several restrictions on communication rules (mod-
ulo symmetry) can be introduced; we provide a detailed description of these
variants in Subsection 2.2.

When a GCPS has only one type of these restricted rules, then we speak of
a generalized communicating P system with minimal interaction or a minimal
interaction P system (with the given type of rules), called also a GCPSMI, for
short.

Due to the simplicity of their rules, the generative power of minimal inter-
action P systems is of particular interest and it has been studied in details.
In [14, 4] it was proved that eight of the possible nine restricted variants (with
respect to the form of rules) are able to generate any recursively enumerable
set of numbers; in the ninth case only finite sets of singletons can be obtained.
Furthermore, it was also shown that these systems even with relatively small
numbers of cells and simple underlying (hypergraph) architectures are able to
achieve this generative power.

In this paper, we add one more restriction, i.e., we study minimal inter-
action P systems where the alphabet of objects is a singleton. We show that
these so-called one-symbol minimal interaction P systems given with any of the
parallel-shift, presence-move, chain, and join rules are able to generate every
recursively enumerable set of natural numbers. These results demonstrate that
computational completeness can be achieved with (certain variants of) GCPSMIs
defined over the simplest alphabets. We also examine the generative power of
one-symbol minimal interaction P systems with conditional-uniport-in rules and
prove that these constructs are less powerful than the previous one. We note
that, by definition, the concept of the rest of the restricted communication rules
is not applicable for GCPSs over a one-symbol object alphabet. Finally, we pro-
vide topics for future research.

2 Preliminaries

In this section we recall some basic notions and notations used in membrane
computing, formal language theory and computability theory. For further details
and information the reader is referred to [9–11].

2.1 Some basic notions

An alphabet is a finite non-empty set of symbols. For an alphabet V , we denote
by V ∗ the set of all strings over V , including the empty string, λ.

A finite multiset over V is a mapping M : V −→ N; M(a) is said to be
the multiplicity of a in M (N denotes the set of non-negative integers). A finite
multiset M over an alphabet V can be represented by all permutations of a

string x = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where aj ∈ V , M(aj) 6= 0, 1 ≤ j ≤ n;

x represents M in V ∗. If no confusion arises, we also may use the customary set



notation for denoting multisets. The size of a finite multiset M, represented by
x ∈ V ∗ is defined as Σa∈V |x|a.

Next we recall the notion of a register machine; for further details the reader
is referred to [7].

A register machine is a 5-tuple M = (Q, R, q0, qf , P ), where Q is a finite non-
empty set, called the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of registers,
q0 ∈ Q is the initial state, and qf ∈ Q is the final state. P is a set of instructions
of the following forms: (p, A+, q, s), where p, q, s ∈ Q, p 6= qf , A ∈ R, called an
increment instruction, or (p, A−, q, s), where p, q, s ∈ Q, p 6= qf , A ∈ R, called a
decrement instruction. Furthermore, for every p ∈ Q, (p 6= qf ), there is exactly
one instruction of the form either (p, A+, q, s) or (p, A−, q, s).

A configuration of a register machine M , defined above, is given by a (k+1)-
tuple (q, m1, . . . , mk), where q ∈ Q and m1, . . . , mk are non-negative integers, q
corresponds to the current state of M and m1, . . . , mk are the current numbers
stored in the registers (in other words, the current contents of the registers or
the value of the registers) A1, . . . Ak, respectively.

A transition of the register machine consists in updating the number stored
in a register and in changing the current state to another one, according to an
instruction.

An increment instruction (p, A+, q, s) ∈ P is performed if M is in state p,
the number stored in register A is increased by 1, and after that M enters either
state q or state s, chosen non-deterministically.

A decrement instruction (p, A−, q, s) ∈ P is performed if M is in state p,
and if the number stored in register A is positive, then it is decreased by 1, and
then M enters state q, and if the number stored in A is 0, then the contents of
A remains unchanged and M enters state s.

We say that a register machine M = (Q, R, q0, qf , P ), with k registers, given
as above, generates a non-negative integer n if starting from the initial configu-
ration (q0, 0, 0, . . . , 0

︸ ︷︷ ︸

k

) it enters the final configuration (qf , n, 0, . . . , 0
︸ ︷︷ ︸

k

).

The set of non-negative integers generated by M is denoted by N(M).
It is known that register machines generate all recursively enumerable sets

of non-negative integers [7]; the family of these sets of numbers is denoted by
NRE and the family of finite sets of non-negative integers by NFIN .

2.2 Generalized communicating P systems

Next we recall the basic definitions concerning generalized communicating P
systems [14].

Definition 1. A generalized communicating P system (a GCPS) of degree n,
where n ≥ 1, is an (n + 4)-tuple

Π = (O, E, w1, . . . , wn, R, h)

where



1. O is an alphabet, called the set of objects of Π;
2. E ⊆ O; called the set of environmental objects of Π;
3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules (or communication rules) of the form

(a, i)(b, j) → (a, k)(b, l), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and
j = 0, then {a, b} ∩ (O \ E) 6= ∅; i.e., a /∈ E and/or b /∈ E;

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n, which
contain multisets of objects over O; initially cell i contains multiset wi (the initial
contents of cell i is wi). If no confusion arises, we may distinguish the cells by
using another labeling.

We distinguish an additional special cell, labeled by 0, called the environment.
The environment contains objects of E in an infinite number of copies. Since the
initial configuration is given and the rules only move but not increase the objects
among the cells, we need a supply of objects in the environment.

The cells interact with each other by means of the rules (a, i)(b, j) → (a, k)(b, l),
with a, b ∈ O and 0 ≤ i, j, k, l ≤ n. Such an interaction rule may be applied if
there is an object a in cell i and an object b in cell j. As the result of the ap-
plication of the rule, the object a moves from cell i to cell k and b moves from
cell j to cell l. If two objects from the environment are moved to some other
cell or cells, then at least one of them must not appear in the environment in
an infinite number of copies. Otherwise, an infinite number of objects can be
imported in the system in one step.

Let Π = (O, E, w1, . . . , wn, R, h), n ≥ 1, be a GCPS. A configuration of Π is
an (n+1)-tuple (z0, z1, . . . , zn) with z0 ∈ (O\E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n;
z0 is the multiset of objects present in the environment in a finite number of
copies, whereas, for all 1 ≤ i ≤ n, zi is the multiset of objects present inside cell
i. The initial configuration of Π is the tuple (λ, w1, . . . , wn).

Given a multiset of rules R over R and a configuration u = (z0, z1, . . . , zn)
of Π , we say that R is applicable to u if all its elements can be applied si-
multaneously to the objects of multisets z0, z1, . . . , zn such that every object is
used by at most one rule. Then, for a configuration u = (z0, z1, . . . , zn) of Π ,
a new configuration u′ = (z′0, z

′

1, . . . , z
′

n) is obtained by applying the rules of R
in a non-deterministic maximally parallel manner: taking an applicable multi-
set of rules R over R such that the application of R results in configuration
u′ = (z′0, z

′

1, . . . , z
′

n) and there is no other applicable multiset of rules R′ over R
which properly contains R.

One such application of a multiset of rules satisfying the conditions listed
above represents a transition in Π from configuration u to configuration u′.

A transition sequence is said to be a successful generation by Π if it starts
with the initial configuration of Π and ends with a halting configurations, i.e.,
with a configuration where no further transition step can be performed.

We say that Π generates a non-negative integer n if there is a successful
generation by Π such that n is the size of the multiset of objects present inside
the output cell in the halting configuration.



The set of non-negative integers generated by a GCPS Π in this way is
denoted by N(Π).

In the following we recall the notions of the possible restrictions on the in-
teraction rules (modulo symmetry). Let O be an alphabet and let us consider
an interaction rule (a, i)(b, j) → (a, k)(b, l) with a, b ∈ O, i, j, k, l ≥ 0. Then we
distinguish the following cases:

1. i = j = k 6= l: the conditional-uniport-out rule
(the uout rule, for short) sends b to cell l provided that a and b are in cell i;

2. i = k = l 6= j: the conditional-uniport-in rule
(the uin rule, for short) brings b to cell i provided that a is in that cell;

3. i = j, k = l, i 6= k : the symport2 rule
(the sym2 rule, for short) corresponds to the minimal symport rule [10], i.e.,
a and b move together from cell i to k;

4. i = l, j = k, i 6= j : the antiport1 rule
(the anti1 rule, for short) corresponds to the minimal antiport rule [10], i.e.,
a and b are exchanged in cells i and k;

5. i = k and i 6= j, i 6= l, j 6= l: the presence-move rule
(the presence rule, for short) moves the object b from cell j to l, provided
that there is an object a in cell i and i, j, l are pairwise different cells;

6. i = j, i 6= k, i 6= l, k 6= l : the split rule
(the split rule, for short) sends a and b from cell i to cells k and l, respectively;

7. k = l, i 6= j, k 6= i, k 6= j : the join rule
(the join rule, for short) brings a and b together to cell i;

8. i = l, i 6= j, i 6= k and j 6= k : the chain rule
(the chain rule, for short) moves a from cell i to cell k while b is moved from
cell j to cell i, i.e., to the cell where a was previously ;

9. i, j, k, l are pairwise different numbers: the parallel-shift rule
(the shift rule, for short) moves a and b from two different cells to another
two different cells.

A generalized communicating P system may have rules of several types as
defined above. When only one of them is considered, then we call the corre-
sponding GCPS a minimal interaction P system (with the given type of rules),
or a GCPSMI, for short.

In the following, NOtPk(x) denotes the set of numbers generated by min-
imal interaction P systems of degree k and with rules of type x, k ≥ 1 and
x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}, and NOtP∗(x)
is the notation for

⋃
∞

k=1 NOtPk(x).



If the number of objects in the alphabet of objects in the GCPSMI is l, then
the previous notations are changed to NOtPk,l(x) and NOtP∗,l(x), respectively.
We call these GCPSMIs l-symbol minimal interaction P systems (with a given
type of rules). For simplicity, we use terms 1-symbol GCPSMI and one-symbol
GCPSMI as equivalent.

Throughout the paper, we also refer to the symbol in the one-symbol P
systems as token (denoted by •). Furthermore, without any loss of the generality
we may assume that one-symbol GCPSMIs are given over alphabet O = {•}.

Notice that in the case of one-symbol minimal interaction P systems, the
concepts of rule types conditional-uniport-out, symport2, antiport1, and split
are not applicable. Since O = E, in these cases the rules (•, i)(•, j) → (•, k)(•, l)
do not satisfy condition 4. of Definition 1, namely, that if i = 0 and j = 0, then
{•} ∩ (O \ E) 6= ∅.

Due to their simplicity, the generative power of minimal interaction P systems
is of particular interest. In [14] and [4] it was shown that NOtP∗(anti1) ⊂ NFIN
and

NRE = NOtP30(uin) = NOtP30(uot) = NOtP10(sym2) = NOtP9(split) =
= NOtP7(join) = NOtP36(presence) = NOtP19(shift) = NOtP∗(chain).

These results are valid if no restriction is introduced on the size of the object
alphabet of the minimal interaction P systems. In the following we restrict the
size of the alphabet of objects to one, and will investigate the generative power
of one-symbol minimal interaction P systems.

We observe that such systems are very similar to Petri Nets having a re-
stricted topology. This is especially visible if a graphical notation is used. How-
ever, the maximal parallelism and the concept of the environment are more
specific to P systems, so we place this study in the latter framework. We also
remark that due to the similarity, some of the used terms are borrowed from
the area of Petri Nets. A converse study of P systems from the point of view of
Petri Nets can be found in [5]. For more details on Petri Nets and membrane
computing we refer to [10].

3 Main results

In this section we show that one-symbol minimal interaction P systems with any
of rule types parallel-shift, presence-move, chain, and join are able to generate
every recursively enumerable set of numbers. If the one-symbol minimal inter-
action P system Π uses conditional-uniport-in rules, then it either generates a
finite set of non-negative numbers or there exists a natural number K such that
N(Π) contains any natural number l ≥ K.

We first start with one-symbol minimal interaction P systems with parallel-
shift rules and show their computational completeness. A very similar result
is given in Theorem 4.4 from [5], however the definition used there is slightly
different, but that construction can be adapted to the case of GCPSMI with
parallel shift rules. We give below a different proof and use it in the rest of the
sequel.



Theorem 1. NOtP∗,1(shift) = NRE.

Proof. Let S ∈ NRE generated by a register machine M = (Q, R, q0, qf , P )
with R = {A1, . . . An}, n ≥ 1 (M is given as in Subsection 2.1). To prove
the statement, we construct a one-symbol minimal interaction P system Π =
(O, E, w1, . . . , wr, R1, h), r ≥ 1, with parallel-shift rules such that N(M) =
N(Π) holds. The proof idea is based on simulation of the application of the
instructions of M by applications of rule sets of Π .

The components of Π are defined as follows. Let O = E = {•}, and let Π
have for any p ∈ Q cells labeled by elements of {p, 1p, 2p, 3p, 4p, 5p} in Π such
that the sets of cells representing different states of M are pairwise disjoint.
(Note that for every p ∈ Q, (p 6= qf ), there is exactly one instruction of the form
either (p, A+, q, s) or (p, A−, q, s).) Furthermore, let Π have for any register Ai,
1 ≤ i ≤ n, in M a dedicated cell labeled by Ai; the output cell is the one which
corresponds to the output register of M . Let these cells be pairwise different and
also different from the cells defined previously to the instructions. Furthermore,
let Π have no more cells. For the sake of simplicity, throughout the paper, we
use terms ”cell p” , ”cell Ai” and ”cell labeled by p”, ”cell labeled by Ai” as
equivalent, respectively.

We define the rule set, R1, of Π as follows.
For any increment instruction (p, Ai+, q, s) of M , 1 ≤ i ≤ n, R1 contains the

following rules.

(1(p)) : (•, p)(•, 0) → (•, q)(•, Ai) (2(p)) : (•, p)(•, 0) → (•, s)(•, Ai)

For any decrement instruction (p, Ai−, q, s) of M , 1 ≤ i ≤ n, R1 contains the
following rules.

(1(p)) : (•, p)(•, 0) → (•, 1p)(•, 2p) (2(p)) : (•, 1p)(•, Ai) → (•, 3p)(•, 0)

(3(p)) : (•, 2p)(•, 0) → (•, 4p)(•, 5p) (4(p)) : (•, 1p)(•, 4p) → (•, s)(•, 0)

(5(p)) : (•, 3p)(•, 4p) → (•, q)(•, 0)

Furthermore, R1 consists only of the rules defined above.
The initial contents of the cells are given as by wq0

= •, and wx = λ for
x ∈ Q ∪ {ky | 1 ≤ k ≤ 5, y ∈ Q} ∪ {Ai | 1 ≤ i ≤ n}. It can easily be observed
that this configuration corresponds to the initial configuration of M.

In the following we show that the application of an increment instruction
or a decrement instruction of M can be simulated by the application of the
corresponding rule set of Π defined above.

The reader may easily notice that (•, p) means that the current state of M
is p, therefore the fact that rules (1(p)) and rule (2(p)) describe the application
of an increment instruction of M is obvious.

Suppose now that the instruction of M to be simulated is (p, Ai−, q, s). Then
cell p contains a token. (We note that no cell p, where p ∈ Q has more than one



token during any step of the generation). At the first step of the simulation of
the instruction, only rule (1(p)) is applicable which moves the token from cell p
and one token from the environment to cells 1p and 2p, respectively. If cell Ai

contains at least one token, then, by rule (2(p)), a token from cell 1p moves to
cell 3p and one token from cell Ai exits to the environment. Meantime, the token
from cell 2p and one token from the environment are transported to cells 4p and
5p, respectively. At the next step, the token in cell 3p moves to cell q and the
token in cell 4p exits to the environment, thus, the obtained configuration of Π
corresponds to the configuration of M after performing the decrement instruction
if register Ai contained at least one symbol. If cell Ai does not contain any token,
then after performing rule (1(p)), the only applicable rule is (3(p)), which sends
one-one tokens to cell 4p and cell 5p. After then, rule (4(p)) is applied, which
moves the token from cell 1p to cell s and sends the token in cell 4p to the
environment. Thus, the simulation of the instruction is correct in this case as
well.

Examining the proof above, the reader may observe that the generation pro-
cess in Π is governed by the token arriving in a cell labeled by a state of M and
no simulation of simultaneous instructions of M is possible.

By the construction of R1, if M enters state qf , then Π halts, since there is
no applicable rule if cell qf contains a token. It also can easily be seen that the
number of tokens at the output cell is equal to the number stored in the output
register of M by halting. Thus, N(M) = N(Π .

Using in part the construction in the proof of Theorem 1, we show that one-
symbol minimal interaction P systems with join rules are also computationally
complete.

Theorem 2. NOtP∗,1(join) = NRE.

Proof. The proof, as the previous one, is based on simulation of the work of
a register machine. Let S ∈ N(RE) generated by a register machine M =
(Q, R, q0, qf , P ) with R = {A1, . . . An}, n ≥ 1. (M is given as in Subsection 2.1.)
We construct a one-symbol minimal interaction P system Π = (O, E, w1, . . . , wr,
R1, h), r ≥ 1, with join rules such that N(M) = N(Π) holds. The construction
of Π is done in several steps.

We first note that by Theorem 1 there exists a one-symbol minimal inter-
action P system Π ′ = ({•}, {•}, w′

1, . . . , w
′

r, R
′

1, h
′), r ≥ 1, with parallel-shift

rules which generates S. Suppose that Π ′ is given as the GCPSMI in the proof
of Theorem 1. It is easy to see that the application of any parallel-shift rule
(t) : (•, i)(•, j) → (•, k)(•, l), where i, j, k, l are labels of cells and (t) is the
label of the rule, can be simulated by the application of a join rule (t′) :
(•, i)(•, j) → (•, ct)(•, ct) followed by a split rule (t′′) : (•, ct)(•, ct) → (•, k)(•, l),
where ct is a new cell introduced to rule (t) : (•, i)(•, j) → (•, k)(•, l). The new
cells are pairwise different and different from the already existing ones. By this
observation, we can construct a one-symbol minimal interaction P system Π ′′

which is equivalent to Π ′, i.e., N(Π ′′) = N(Π ′) and the rule set of Π ′′ consists of



the join and split rules constructed to the rules of Π ′ in the previously described
manner.

Then, starting from Π ′′, we will construct Π . To do this, for any split rule
in Π ′′ we design a set of rules in Π which rule set simulates the application of
the split rule and only that. For this reason, we first define a block of cells, a
so-called pseudo-split block. The term ”pseudo-split” refers to that the rule set
realizes a split if some conditions hold.

A pseudo-split block is given as follows (see Figure 1).
The block aims to split two tokens from cell 1 to cells 2 and 3. Cell 1 is

supposed to have at least two tokens. One of them is sent to cell 2 and the other
one to cell 3. Furthermore, one of the following conditions must hold:

1. In one of the nodes 2 and 3 only one token can leave the cell to outside the
block in the following steps of the generation.

2. In one of the nodes 2 and 3 no token can leave the cell to outside the block
for at least the next step of the generation.

Fig. 1. A pseudo-split block

The pseudo-split block is implemented by join rules as follows (initially cells
4, 4′ have two tokens and cell # is a so-called trap cell):

(1) : (•, 1)(•, 4) → (•, 5)(•, 5) (2) : (•, 1)(•, 4′) → (•, 5′)(•, 5′)

(3) : (•, 4)(•, 5) → (•, 3)(•, 3) (4) : (•, 4′)(•, 5′) → (•, 2)(•, 2)

(5) : (•, 4)(•, 5′) → (•, #)(•, #) (6) : (•, 4′)(•, 5) → (•, #)(•, #)

(7) : (•, 5)(•, 3) → (•, 4)(•, 4) (8) : (•, 5′)(•, 2) → (•, 4′)(•, 4′)

The rules corresponding to the trap cell are the following:

(#1) : (•, #)(•, 0) → (•, #̄)(•, #̄) (#2) : (•, #̄)(•, 0) → (•, #)(•, #)

We explain how the block functions. At starting, there are three possibilities:
moving both tokens to cell 5, moving both tokens to cell 5′ or distributing one
token to each of cells 5 and 5′. In the first two cases, the corresponding cells 4
or 4′ will contain no token, so the only applicable rule will be rule (5) or (6),



leading to an infinite generation. So the only possibility remains the third case
where the tokens found at cell 1 are equally distributed between cells 5 and 5′

(rules (1) and (2)). After that, two tokens will arrive at cell 2 and two tokens at
cell 3 (from cells 4′ and 5′ and from cells 4 and 5, respectively). Suppose now
that no token can leave cell 3 in the next step (i.e., condition 2 holds). Then, one
token from cell 3 and one token from cell 5 move to cell 4. This implies that at
the same time one token from cell 2 and one token from cell 5′ will move to cell
4′, because if this does not take place, then at the next step a token from cell 4
and the one remained in 5′ will move to the trap cell. Since the construction is
symmetric, a similar generation phase will be performed if it is cell 2 that cannot
evolve for one step. The block functions similarly if condition (1) holds.

Notice that the pseudo-split block corresponds to a split rule only if at least
one of the conditions (1) and (2) holds. In the following we construct a block
arrangement consisting of pseudo-split blocks such that the above criterion is
satisfied (see Figure 2).

Fig. 2. Pseudo-split blocks simulating a split rule

The block arrangement functions as follows. Initially, each cell 8 and 9 con-
tains one token. Firstly, a pseudo-split block is used to separate two tokens from
cell 1 to cells 4 and 5. After then, a join rule is applied to send a token from cell
4 and cell 8 to cell 6 and from cell 5 and cell 9 to cell 7, respectively. This implies
that the destination cells of the previously performed pseudo-split, i.e., cells 4
and 5 satisfy condition (1), since only one token can leave these cells. This phase
of the generation is followed by two pseudo-splits, where the destination cells
satisfy condition (2), i.e., no token will be able to leave cell 8 and 9, respectively,
at the next step. This implies that no simulation of another split instruction can
start before the tokens coming from cell 1 arrive at cell 2 and 3. Hence, a split
instruction is performed.

Combining join and split operations as described above, the rule set of Π
can be constructed. We leave the details of the construction to the reader. It can
easily be seen that Π generates the same set of numbers as Π ′, thus N(Π) =
N(M) holds.

Next we show that one-symbol minimal interaction P systems with presence-
move rules are also computationally complete.



Theorem 3. NOtP∗,1(presence) = NRE.

Proof. Let S ∈ NRE and let S be generated by a register machine M =
(Q, R, q0, qf , P ) with R = {A1, . . . An}, n ≥ 1. (M is given as in Subsection
2.1.) As in the case of the previous statements, we show that a one-symbol min-
imal interaction P system Π with presence-move rules can be constructed such
that N(M) = N(Π) holds. GCPSMI Π is defined in several steps.

Instead of direct simulations of the increment and decrement instructions of
M , we define sets of rules, called (primitive) blocks, as it was done in [14, 13, 4]
and then we show how a set of rules simulating the application of an increment
instruction or that of a decrement instruction can be constructed from these
blocks.

We will use three types of blocks: the uniport block, the main block, and the
zero block.

To help the reader in the easier understanding of the constructions, we add
figures.

The uniport block is denoted by an arrow between circles labeled by 1 and 2
with a token on the top of it. It corresponds to the move of a token from cell 1 to
cell 2. This action is simulated by the following presence-move rule: (we suppose
that a token is present initially in cell 1′): (•, 1′)(•, 1) → (•, 1′)(•, 2).

The main block, see Figure 3, permits to move synchronously a token from
cell i to cell j and a token from cell k to cell m. If no token is present in cell
k, then an infinite loop occurs. The arrows show the direction of the move of
the objects and the circles corresponds to the cells. Since the semantics of the
block is not symmetric, the double circle indicates the place of the symbol that
triggers the generation and for which the infinite loop can occur.

Fig. 3. The main block

The zero block, see Figure 4, moves a token from cell i to cell j providing that
there is no token in cell k. If this is not the case, then the generation enters an
infinite loop. The notations are analogous to the ones used in Figure 3, namely,
the arrow denotes the direction of the movement of the object, the circles denote
cells, the double line and the circle labeled with k refer to the condition that no
token is present in cell k.

In the following we show how the main block and the zero block is imple-
mented in Π . The simulation of the main block is done by the following rule set.
We suppose that initially cells 5, 8 and 13 contain a token.



Fig. 4. The zero block

(1) : (•, 1)(•, 5) → (•, 1)(•, 6) (2) : (•, 6)(•, 1) → (•, 6)(•, 7)

(3) : (•, 7)(•, 3) → (•, 7)(•, 4) (4) : (•, 8)(•, 6) → (•, 8)(•, 9)

(5) : (•, 9)(•, 7) → (•, 9)(•, 12) (6) : (•, 12)(•, 9) → (•, 12)(•, 5)

(7) : (•, 5)(•, 12) → (•, 5)(•, 2) (8) : (•, 8)(•, 9) → (•, 8)(•, 10)

(9) : (•, 8)(•, 10) → (•, 8)(•, 11) (10) : (•, 8)(•, 11) → (•, 8)(•, 10)

(11) : (•, 13)(•, 7) → (•, 13)(•, 10)

These rules are also depicted on Figure 5 where the arrow represents the
movement direction and the dashed line the controlling cell.

First, by applying rule (1), a token from cell 1 and the token from cell 5 (notice
that cell 1 may contain more than one tokens) moves to cell 6. Then, there are
two possibilities. If the rule (4) is used, then a token will arrive in cell 9 and the
only possible rule to be applied is rule (8) leading to an infinite generation. The
other possibility is using rule (2). At the next step, two possibilities may occur
depending on whether cell 3 contains a token or not. Suppose that there exists
a token in cell 3. Then rules (3) and (4) are applied in parallel, thus a token
in cell 3 moves to cell 4 and the token in cell 6 moves to cell 9. After that, by
rule (5), the token in cell 7 is transported to cell 12, and then, by rule (6), the
token leaves cell 9 and arrives in cell 5. Then, the token in cell 12 moves to cell
2 (rule (7)), which means that the operations of the main block are performed,
i.e., a token from cell 1 moved to cell 2 and a token from cell 3 moved to cell
4. Furthermore, the conditions of the initial configuration hold as well, i.e., each
of cells 5, 8, 13 contains one token. Suppose now that cell 3 does not contain a
token. Then, after performing rule (2), only rules (4) and (11) can be applied
leading to an infinite generation (the token moves infinitely many times between
cells 10 and 11). The reader may easily see that the above rules can properly
function only in the previously described manner. Notice that if we want to
ensure that only one symbol in cell 1 is processed by this block, then we add
rule (12):(•, 14)(•, 1) → (•, 14)(•, 10) to the above rule set.

The simulation of the zero block can be obtained from the rule set above, by
eliminating rule (11) and replacing rule (3) : (•, 7)(•, 3) → (•, 7)(•, 4) with (3) :
(•, 3)(•, 7) → (•, 3)(•, 10). In this case, if rules (3) and (4) can be simultaneously
applied, i.e., if there is a token in cell 3, then a token will appear in cell 10 leading
to an infinite generation by rules (9) and (10). If rule (3) is not applicable, then
applying the sequence of rules (4), (5), (6), (7), a token from cell 1 is successfully
moved to cell 2 on the condition that cell 3 does not contain any token. The reader



Fig. 5. A set of presence-move rules implementing a main block

may notice that the rules cannot be applied in any other manner as described
previously.

Now we explain how the blocks can be used in constructing a one-symbol
minimal interaction P system Π generating the same set of numbers as register
machine M . To do this, we construct block arrangements of rules of Π which
simulate the increment instructions and the decrement instructions of M.

The block arrangement for simulating an increment instruction is illustrated
by Figure 6.

Fig. 6. Block arrangement for simulating an increment instruction

For any increment instruction (p, Ai+, q, s) of M , R1 contains a rule set,
which corresponds to a main block with the following modifications: cell 1 is
replaced by cell p, cell 3 by the environment, and cell 4 by cell Ai. Cells i are
replaced by cells i(p) for 5 ≤ i ≤ 12, respectively. (The cells belonging to the same
instruction and to different instructions (states) of M are pairwise different.)
Since M may enter from state p either state q or state s, which both represent
cell 2 in Π , therefore, instead of rule (7) : (•, 5)(•, 12) → (•, 5)(•, 2), we consider
rules (•, 5(p))(•, 12(p)) → (•, 5(p))(•, q) and (•, 5(p))(•, 12(p)) → (•, 5(p))(•, s).

The reader may immediately see that through the main blocks, described
above, any increment instruction of M can be simulated, therefore the corre-
sponding part of the rule set of Π can be constructed.



Next we show how to construct a block arrangement for simulating a decre-
ment increment instruction. To help the reader in the easier understanding, we
illustrate the construction by Figure 7.

Fig. 7. Block arrangement for simulating a decrement instruction

For a decrement instruction (p, Ai−, q, s) of M , R1 contains two uniport
blocks (•, 1′)(•, p) → (•, 1′)(•, 2) and (•, 1′)(•, 2) → (•, 1′)(•, 3), i.e., we guess
whether or not cell Ai contains a token. Furthermore, it contains a block ar-
rangement which is a combination of a main block and a zero block. The main
block moves a token from cell 2 to cell q and one token from cell Ai to the
environment (if Ai contains at least one token and a token from cell p was sent
to cell 2), or the token sent from cell p to cell 3 is forwarded to cell s (if Ai

does not contain any token). In any other case, the constructed block arrange-
ment implies the occurrence of an infinite loop. It is easy to see that the block
arrangement described above simulates the application of the decrement instruc-
tion of M . Thus, any decrement instruction of M can be simulated, therefore
the corresponding part of the rule set of Π can be constructed.

M halts in the final state qf and the result of the generation is the num-
ber stored in its output register, Ah. To simulate the halting in M, we do not
associate any rule to cells qf , thus no further generation steps in Π can be
performed.

At the beginning of the generation Π contains a token in cell q0, 1′, and in
all the cells in the main blocks used for simulating the increment instructions
and in the block arrangements used for simulating the decrement instructions
which should initially contain at least one token. Due to the construction of R1,
the generation in Π is governed by cells p which correspond to the instructions
of M to be performed, therefore any successful generation in Π corresponds to
a successful generation in M and conversely. This implies that N(M) = N(Π).

Over a one-symbol alphabet of objects, any chain rule corresponds to a
presence-move rule, therefore the following statement is a direct consequence
of Theorem 3.

Corollary 1. NOtP∗,1(chain) = NRE.

Next we describe the generative power of minimal interaction P systems with
conditional-uniport-in rules.



Let Π = (O, E, w1, . . . , wr, R1, h), r ≥ 1, be a one-symbol minimal interac-
tion P system with conditional-uniport-in rules. Since the conditional-uniport-
in rules involve only two cells, to any configuration c of Π , we can assign a
directed graph G(c) where node i represents the cell i of Π , 1 ≤ i ≤ r. The
edges of G are determined by the rules of Π , i.e., if there is a rule of the form
p : (•, i)(•, j) → (•, i)(•, i) in R1, and the cell i is not empty, then there is a
directed edge from node j to node representing i. We call this graph the com-
munication graph of Π in configuration c. Note that if cell i contains no token,
then, despite that p ∈ R1, G(c) has no edge from node j to node i. In this case
we say that the edge from node j to node i has been broken.

In what follows, if no confusion arises, we use Π and graph G, in particular,
the terms node/cell and edge/rule as equivalent.

Theorem 4. For any GCPSMI Π with conditional-uniport-in rules either N(Π)
is finite or there is a natural number K such that l ∈ N(Π) for every l ≥ K.

Proof. The proof is organized as follows. First, we introduce the notion of an
alive path which informally corresponds to a path from the environment to the
output cell in the communication graph of the initial configuration. When no
such path exists, obviously N(Π) is finite. In the other case we show that it
is possible to bring any number of tokens from the environment to the output
cell. We also show that any alive path can be broken, hence this process can be
stopped. If the tokens can possibly go out from the output cell then depending on
whether it is possible to break all outgoing edges or not, N(Π) will be unbounded
or empty.

Now we give some technical details. Let Π = (O, E, w1, . . . , wr, R1, h), r ≥ 1,
be a one-symbol minimal interaction P system with conditional-uniport-in rules.
Without the loss of any generality we may assume that at the initial configuration
every cell contains at least one token, since due to the forms of the rules, if the
cell is empty, then it will remain empty during the generation.

We first show that if N(Π) is an infinite set, then Π should have an alive path.
We call a sequence of cells p = i0, i1, . . . , ilp , where i0 denotes the environment
and ilp = h, an alive path (of length lp) to output cell h if a token (•) from
the environment can move to cell h in lp steps via the cells of p in the given
order. This means that after lp steps, Π will reach a configuration c where any
cell in p contains at least two tokens and there is a directed edge (ij , ij+1), in
the graph G representing c, i.e., any cell ij+1 can import a token from cell ij ,
0 ≤ j ≤ lp − 1. It is easy to see that using the two tokens and the corresponding
rules in the cells, an arbitrary number of tokens can move to cell h via the path.
Obviously, if Π has no alive path, then the set of numbers generated by Π is
finite, since during the generation only a finite number of tokens can move to h.

However, the tokens arriving at the output cell may leave it, therefore the
existence of an alive path does not imply the infinity of N(Π). For this reason,
we examine the possible movement of the tokens from the output cell.

A node k for which there is an edge (h, k) in the representing graph G of Π in
some configuration c is called a neighbor of node h in c. We denote by NBR(h, c)



the set of all neighbors of a node h in configuration c and by NBR(h) the set
of all nodes which are neighbors of h during any generation.

We also recall that a knot in a graph is a subset of nodes X such that for
every edge (i, j), i ∈ X it holds j ∈ X , i.e., it is not possible to leave X .

The reader may observe that L(Π) = {0} or L(Π) = ∅ if the following
condition holds:

1. In any configuration c, there exists a set of nodes X with X ⊆ (NBR(h, c)∪
NBR(i0, c) \ {i1}), such that X forms a knot.

In particular, if X is a set of neighbors of the environment which does not contain
i1, the first node from the alive path p, that is, X ⊆ (NBR(i0, c) \ {i1}), then
L(Π) = ∅, otherwise L(Π) = {0}.

This means that if L(Π) is an infinite set, than there is an alive path from
i0 to h, such that the condition above does not hold.

Now we show that the existence of such an alive path implies that there
exists a constant K such that l ∈ L(Π) for any l ≥ K. Suppose that there exists
an alive path p in Π which does not satisfy condition 1 above. Then there is a
generation in Π which permits to bring any number of new tokens in the output
cell as follows: a token that was imported at the first time from the environment
by cell i1 (at the first configuration change in cell i1) at the next step will be
used for bringing in one other token from the environment. Then, after |p| steps
the token that first entered from the environment arrives at cell h and at the
same time each internal cell in the path, i.e., cells i1, . . . , ilp−1 will contain at
least two tokens.

Now we should prove that after some point the process can stop at any time.
Our assertion is based on the following observation. If there are two cells a (with
n tokens) and b with one token, and there is a rule (•, b)(•, a) → (•, b)(•, b) (i.e.
an edge (a, b)), then by using all tokens present in b at every step, after at most
n steps all tokens in cell a can be transported to cell b. This observation comes
from the fact that the number of tokens in cell b after k steps is 2k, while the
number of tokens in cell a can be at most 2k(n − k). Using this procedure, it is
possible to break an edge in the graph G(c) representing Π in some configuration
c, i.e., to obtain a configuration where the communication graph has not this
edge anymore.

This observation implies that for an alive path p = i0 . . . ilp = h of Π it
is possible to break all edges in the graph which are different from the edges
(i, i + 1), 1 ≤ i ≤ lp − 1. (We also break the edges of all other possible alive
paths: edge by edge, starting from the one linked to the environment.) After that,
using a similar procedure for every node in p, we may obtain a configuration that
all cells belonging to the path p, except i0 and h, contain exactly two tokens.

Finally, since condition 1 does not hold, there is no subset of neighbor nodes
of h which form a knot, for any configuration c and every node k ∈ NBR(h, c)
either there is a node k′ ∈ NBR(k, c) but k′ 6∈ NBR(h, c), or there is a path
from k consisting of neighbors of h to some node k′ ∈ NBR(h, c) such that it
has a neighbor k′′ ∈ NBR(k′, c) which is not neighbor of h (k′′ 6∈ NBR(h, c)).



We observe that in the first case node k can be emptied, thus the edge (h, k)
can be broken, while in the second case all tokens can move from k to k′ (for all
possible k) which reduces to the first case.

In a similar way, since condition 1 does not hold in any configuration c, it is
possible to break all edges (i0, k), k ∈ (NBR(i0, c) \ {i1}). Then, it is possible
to break at the same time the edges going out from h as well as edges going out
from the environment (i0).

Hence, at this moment there have remained only one alive path p, where
each cell contains exactly two tokens. Moreover, in this configuration h has no
neighbor, and the only neighbor of the environment is i1. Let K − 1 be the
number of tokens at cell h at this moment. Take any l ≥ K. In order to obtain l
it is enough to perform l−K + 1 generation steps where every cell ik belonging
to p brings one token from ik−1 and sends one token to ik+1 and after that bring
two tokens to cell h, thus breaking the last edge. Thus, h will contain l tokens.
The generation will stop some steps later as follows. Firstly, the path p is broken
edge by edge, starting from the edge linking to the environment. This concludes
the proof.

4 Conclusions

It is a well-known fact that register machines are able to generate any recur-
sively enumerable set of natural numbers. These machines operate over a one
letter alphabet, i.e., use only the symbol stored in several copies in the regis-
ters. Our results provide computational complete computing devices over the
simplest alphabet with other types of simple architectures. Since the concept
of four types of the restricted communication rules were not applicable for one-
symbol minimal interaction P systems, but GCPSMIs with three of them were
computational complete if no restriction was put on the size of the object al-
phabet, the following problem arises. What is the minimal number k such that
GCPSMIs with a given type of rule (except antiport1) with object alphabet of
size at most k are computationally complete? In [4] constant upper bounds were
presented on the number of cells in the GCPSMIs which were computationally
complete. It is as interesting question what can we say on the generative power
of one-symbol GCPSMI-s having a number of cells limited by a constant.

Another important topic for future research is the relation between one-
symbol minimal interaction P systems and Petri nets. Similar questions have
already been studied in [3].
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