Modeling population growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by using **P-systems**

M.A. Colomer¹, S. Lavín², I. Marco², A. Margalida³, I. Pérez-Hurtado⁴, M.J. Pérez-Jiménez⁴, D. Sanuy⁵, E. Serrano², L. Valencia-Cabrera⁴

> ¹ Dpt. of Mathematics, University of Lleida Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain colomer@matematica.udl.es

 $^2\,$ Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193-Bellaterra (Barcelona), Spain.

{Santiago.Lavin, Ignasi.Marco, Emmanuel.Serrano}@uab.cat

³ Bearded Vulture Study & Protection Group Apdo. 43 E-25520 El Pont de Suert (Lleida), Spain margalida@inf.entorno.es

⁴ Research Group on Natural Computing Dpt. of Computer Science and Artificial Intelligence, University of Sevilla Avda. Reina Mercedes s/n. 41012 Sevilla, Spain {perezh, marper}@us.es, luivalcab@alum.us.es ⁵ Dpt. of Animal Production, University of Lleida Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain dsanuy@prodan.udl.cat

Abstract. P systems provide a high level computational modeling framework which integrates the structural and dynamic aspects of ecosystems in a comprehensive and relevant way. In previous work [1, 2], there have been presented several ecosystems modeled by P systems. The good results obtained suggest studying new ecosystems as the one presented in this paper. Pyrenean Chamois is a species inhabiting the Catalan Pyrenees. In recent years it has been hit by diseases that cause a drastic decrease in the number of individuals. Its presence leads to significant economic contributions in the area, so it is very interesting to provide a model in order to facilitate the management.

1 Introduction

Modeling a biological system is usually very complicated because each biological process involves a large number of factors that interact among involved and the relationships between them. Therefore the most common solution is to define it a scenario in which the number of variables and interactions between variables is very limited.

Most of the existing models for the study of population dynamics are based on differential equations (ODEs), but this approach has some drawbacks. When the number of species in a model is greater than two, the equations system proposed is so complex that it is usually solved using numerical methods. Besides, improvements on the performance of the models are generally obtained by the addition of ingredients, which in the case of ODEs means that the whole modeling process needs to be done again from scratch.

Computer models based on P system offer significant advantages: modularity, parallelism, and no limitation on the number of interrelated variables that evolve in parallel. These properties make them very attractive for modeling complex ecosystems.

Each ecosystem has its own important peculiarities, thus trying to design a "niversal" ecosystem model is not a good approach. The model should be adapted taking into account if a protected and endangered species is being studied, or if the ecosystem deals with an invasive species, or simply an endemic area.

Nevertheless, there are some aspects common to most ecosystems such as:

- they contain a large number of individuals and a large number of species.
- the life cycles of species that inhabiting in the ecosystem displays several basic processes such as: feeding, growth, reproduction and death.
- these processes are annually repeated.
- the evolution often depends on the environment: climate, soil, \ldots
- the natural dynamics suffers modifications due to human activities.

These common features yield some requisites for the model, from a computational point of view: many processes take place simultaneously, there is cooperation between individuals and elements of the ecosystem, partial synchronization among the dynamic evolution sub-ecosystems (for example, there could be adverse weather conditions some year, and this does not affect a single subecosystem, but has a global influence on the entire ecosystem), situations need to be restored annually.

These considerations led to the definition of an appropriate modeling semantic context for the P system. In particular, a precise semantics of the multienvironment functional probabilistic P system with active membranes has been used to model two real ecosystems: One, based on the scavenger birds in the Catalan Pyrenees (Spain) [1] and another one based on the *zebra mussel* in the reservoir of Ribarroja (Spain) [2]. In the first case an endangered species is modeled, the purpose of the obtained model is the study of the evolution of the ecosystem under different scenarios to make the most appropriate management decisions for the conservation of species. The second case study corresponds to a completely different situation, the zebra mussel is an exotic species that has shown an excellent adaptation after being introduced in the reservoir. Its uncontrolled reproduction causes significant economic and ecological damage.

In both cases we have designed a simulator to validate the results, managers now have two tools enabling them to perform virtual experiments under different conditions. In order to show that the proposed modeling framework enables the study of a wide range of ecosystems, this paper presents a model for the study of the Pyrenean Chamois dynamics in the Catalan Pyrenees (Spain), it is an emblematic species that was in danger of extinction a few years ago, and is very typical of this area.

2 Pyrenean Chamois

It is a small ungulate living in the Catalan Pyrenees, it attracts a great interest, not only from a hunting standpoint, but also naturalistic and touristic. At present the existing population in the Pyrenees is estimated at about 53,000 individuals. The status of the species has not always been so favorable, in the late 60s the population decreased down to the edge of extinction due to indiscriminate hunting. Fortunately National Hunting Reserves managed by the regional administration were created in order to save the species.

This species has no major predators in the Pyrenees, except the brown bear(Ursus arctos), and the golden eagle (Aquila chrysaetos). However it is a species with a small growth rate, compared with other species of ungulates. In recent years, two outbreaks of Pestivirus and Queratoconjuvitis have affected some Pyrenean chamois populations of the Catalan Pyrenees, however only the earlier has been responsible of local population decreases greater than 80The Pyrenean chamois has a life expectancy of 20 years, though the mortality rate is high for animals older than 11 years. In the early ages the mortality rate ranges from 40% to 50%, while it is around 10% for adults younger than 11 years. At 2 years they reach the reproductive age, and approximately 75% of females of childbearing age mate once a year generally producing a descendant.

The Pestivirus disease is having a very important impact at the social and economic scale in the Pyrenees. The media have been blare of different epidemics occurring, being a reflection of the concerns of local communities, Government of Catalonia, ranchers, hiking groups, conservationists and hunters. The suspension of Pyrenean chamois hunting in the affected areas has led to major loss of economic income. This loss is due not only to the lack of direct income through payment of hunting licences, but also by the disappearance of the indirect income (ecoturism) that hunters and their guests bring out. Last but not least, we must highlight the considerable ecological impact of the sudden disappearance of this herbivore in the affected areas. Despite the detailed studies currently being carried out, the resulting consequences in the ecosystem are still unclear.

In Spain, Pestivirus infection of the species is up to now affecting only the region of Catalonia. However, it is possible that the process spreads to other regions. The process also affects the French Pyrenees sector, which borders the affected Catalan area [5]. However, astonishingly no disease has been detected, to date, in the Principality of Andorra (with the exception of a single chamois found in 2002 in almost the same area hit by the first outbreak of disease).

In the Catalan Pyrenees four areas can be distinguished where Pyrenean chamois live in herds, figure 1. We assume that is unlikely that this species moves between areas, and hence wherever there is a lack of resources the animals die.

In this work we aim to present a model to simulate the evolution of the Pyrenean Chamois in the Catalan Pyrenean.

Fig. 1. Study area in the Catalonia Pyrenees

3 A P system based modeling framework

It will define the variant of P-Sytem to be used for modeling the Pyrenean Chamois.

Definition 1. A multienvironment functional probabilistic P system with active membranes of degree (q, m) with $q \ge 1$, $m \ge 1$, taking T time units, $T \ge 1$, is a tuple

 $(G, \Gamma, \Sigma, R_E, \Pi, \{f_{r,j}: r \in R_{\Pi}, 1 \le j \le m\}, \{\mathcal{M}_{ij}: 0 \le i \le q-1, 1 \le j \le m\})$

where:

- -G = (V,S) is a directed graph such that $(x,x) \in S$, for each $x \in V$. Let $V = \{e_1, \ldots, e_m\}$ whose elements are called environments;
- Γ is the working alphabet and $\Sigma \subsetneq \Gamma$ is an alphabet representing the objects that can be present in the environments;
- $-R_E$ is a finite set of communication rules between environments of the form

$$(x)_{e_j} \xrightarrow{\stackrel{p_{(x,j,j_1,\ldots,j_h)}}{\longrightarrow}} (y_1)_{e_{j_1}} \ldots (y_h)_{e_{j_h}}$$

where $x, y_1, \ldots, y_h \in \Sigma$, $(e_j, e_{j_l}) \in S$ $(l = 1, \ldots, h)$ and $p_{(x,j,j_1,\ldots,j_h)}(t) \in [0,1]$, for each $t = 1, \ldots, T$. If $p_{(x,j,j_1,\ldots,j_h)}(t) = 1$, for each t, then we omit the probabilistic function. These rules verify the following:

- * for each e_j and for each x, the sum of functions associated with the rules from R_E whose left-hand side is $(x)_{e_j}$ coincide with the constant function equal to 1.
- $-\Pi = (\Gamma, \mu, R_{\Pi})$ where
 - μ is a membrane structure consisting of q membranes, with the membranes injectively labeled with 0, ..., q − 1. The skin membrane is labeled with 0. We also associate electrical charges from the set {0, +, −} with membranes; and
 - R_{Π} is a finite set of evolution rules of the form $r : u[v]_i^{\alpha} \to u'[v']_i^{\alpha'}$ where $u, v, u', v' \in M(\Gamma)$, $i \in \{0, 1, \dots, q-1\}$, and $\alpha, \alpha' \in \{0, +, -\}$;
- For each $r \in R_{\Pi}$ and for each $j, 1 \leq j \leq m, f_{r,j}$ is a computable function whose domain is $\{1, 2, \ldots, T\}$ and its range is contained in [0, 1], verifying the following:
 - ★ For each $u, v \in M(\Gamma)$, $i \in \{0, ..., q-1\}$ and $\alpha \in \{0, +, -\}$, if $r_1, ..., r_z$ are the rules from R_{Π} whose left-hand side is $u[v]_i^{\alpha}$, then $\sum_{j=1}^z f_{r_j}(t) = 1$, for each $t, 1 \leq t \leq T$.
- For each j $(1 \le j \le m)$, $\mathcal{M}_{0j}, \ldots, \mathcal{M}_{q-1,j}$ are strings over Γ , describing the multisets of objects initially placed in the q regions of μ .

A multienvironment probabilistic functional extended P system with active membranes of degree (q, m) taking T time units

$$(G, \Gamma, \Sigma, R_E, \Pi, \{f_{r,j} : r \in R_{\Pi}, 1 \le j \le m\}, \{\mathcal{M}_{ij} : 0 \le i \le q-1, 1 \le j \le m\})$$

can be viewed as a set of m environments e_1, \ldots, e_m linked between them by the arcs from the directed graph G. Each environment e_j contains a functional probabilistic P system with active membranes of degree q, each of them with the same skeleton, Π , and such that $\mathcal{M}_{0j}, \ldots \mathcal{M}_{q-1,j}$ describe their initial multisets.

When a communication rule between environments

$$(x)_{e_j} \xrightarrow{p_{(x,j,j_1,\ldots,j_h)}} (y_1)_{e_{j_1}} \ldots (y_h)_{e_{j_h}}$$

is applied, object x pass from e_j to e_{j_1}, \ldots, e_{j_h} possibly modified into objects y_1, \ldots, y_h , respectively. In any moment t, $1 \le t \le T$, at which an object x is in environment e_j , one and only one rule will be applied according to its probability which is given by $p_{(x,j,j_1,\ldots,j_h)}(t)$.

We assume that a global clock exists, marking the time for the whole system (for its compartments), that is, all membranes and the application of all rules are synchronized.

The tuple of multisets of objects present at any moment in the m environments and at each of the regions of the P systems located within them, and the polarizations of the membranes in each P system, constitutes a *configuration* of the system at that moment. At the initial configuration of the system we assume that all environments are empty and all membranes have a neutral polarization.

The P system can pass from one configuration to another by using the rules from $R = R_E \cup \bigcup_{j=1}^m R_{\Pi_j}$ as follows: at each transition step, the rules to be applied are selected according to the probabilities assigned to them, and all applicable rules are simultaneously applied and all occurrences of the left-hand side of the rules are consumed, as usual.

4 Model

Pyrenean chamois is one of the 13 species that were considered in the ecosystem modeled in [1]. However, that paper focuses mainly on the processes of feeding, reproduction, and mortality, including also that migration to other areas may occur in the event of resources shortage. The possibility that the species could be infected by disease was not taken into account, neither the fact that some biological parameters depend on the weather.

Taking advantage of the modularity of the P system, in order to cover these new aspects it suffices to modify the schema of the model presented in [1], figure 2, by adding two modules, weather and disease module. In this work we are divided the mortality module in two, natural and hunter module. Besides, modules on exchange between environments will be removed, since Pyrenean chamois do not migrate when there are not enough resources (as mentioned in section 2).

Fig. 2. Sheme model applied by [2]

We present a preliminary study of the dynamics of Pyrenean Chamois, taking into account the following considerations

- there are four separated areas in the Catalan Pyrenees were the Pyrenean chamois lives.
- Climatic conditions, especially in winter (in particular the thickness of the snow layer), influence the values of biological parameters of the species Pyrenean chamois [3].
- Causes of death for this species include: natural death, hunting and to the spread of disease. Only Pestivirus disease will be taken into account, while other diseases of importance than are known to affect the species will not be considered yet.
- The possibility of introducing more species in the model remains open. Note that in the same geographical space other wild and domestic ungulates may coexist in some cases, and this is worth studying especially if these species are competing for food with the Pyrenean chamois.

The algorithmic scheme of the proposed model is shown in figure 3. The algorithm has been sequenced, but all animals evolve in parallel. The processes to be modeled will be the weather conditions (snow), reproduction, regulation of density, food, natural mortality, hunting mortality and mortality from the disease. In order to model these processes for each species it is needed some biological, geographical and human factors, that is shown in Table1.

Fig. 3. Scheme model of the Pyrenean chamois model

Biological	Parameter					
Age at which they are considered adults	g_0					
Age at which they begin to be fertile	g_1					
Age at which they cease to be fertile	g_2					
Life expectancy	g_3					
Proportion of females in the population (as per 1)	k_1					
Fertility rate (as per 1)	k_2					
Number of descendants per female	k_3					
Rate of natural mortality on young animals (as per 1)	m_1					
Rate of natural mortality on adult animals (as per 1)	m_2					
Amount of grass consumed per month and animal	$\beta_i \ 1 \le i \le 10$					
Geographical	Parameter					
Amount of grass produced per month	$\alpha_{i,\nu}, 1 \le i \le 10, 1 \le \nu \le 4$					
Probability of having the disease	$ms_{\nu}, 1 \le \nu \le 4$					
Probability of dying from a disease	$md_{\nu}, 1 \le \nu \le 4$					
Maximum density of the ecosystem	$d1_{\nu}, 1 \le \nu \le 4$					
Number of animals that survive after reaching the maximum density	$d2_{\nu}, 1 \le \nu \le 4$					
Human factors	Parameter					
Young animals hunted	$h1_{\nu}, 1 \le \nu \le 4$					
Adult animals hunted	$h2_{\nu}, 1 \le \nu \le 4$					

Table 1. Biological and geographical information (*i* month, ν area, *l* Snow thickness category).

The proposed model consists of a multienvironment functional probabilistic P system with active membranes of degree (4, 11), taking T times units

$$(G, \Gamma, \Sigma, R_E, \Pi, \{f_{r,\nu} : r \in R_{\Pi}, 1 \le \nu \le 4\}, \{M_{i\nu} : 0 \le i \le 10, 1 \le \nu \le 4\})$$

where:

- The graph of the system is G = (V, S), where $V = \{e_1, \ldots, e_4\}$ is the set of nodes called environments, and $S = \{(e_1, e_i) : 1 \le i \le 4\}$.
- The working alphabet is

$$\begin{split} &\Gamma = \{X_{jy}, \; Y_{jy}, \; Y'_{jy}, \; Z_{jy}, \; V_{jy}, \; W_{jy}: \; 0 \le j \le g_3, \; 1 \le y \le T\} \cup \\ &\{a, c, d, e, t, h, d_1 \; F, D, S, N\} \; \cup \; \{t_i: \; 1 \le i \le 3\} \; \cup \{G_i: \; 4 \le i \le 10\} \cup \\ &\{R_i: \; 0 \le i \le 7\} \end{split}$$

The objects X, Y, Y', Y'', Z, V and W are associated with animals in different states, index j represents the age of the animal and index y represents the moment of the simulation. The t are objects associated with the weather. F is an object that allows the generation of food in the form of grass. G_i are objects associated with the production of grass in the month i. The objects D, c, and e are used to control the density of animals of each species. The

objects h_1 and h are used in order to know the state of Pesti-virus. The objects S and N indicate presence or absence of the disease, respectively, and finally there is the counter R that will allow us to synchronize the P System.

- The environment alphabet is

$$\Sigma = \{t, t_i : 1 \le i \le 10\}$$

- The purpose of the set R_E of environment rules is to select the weather conditions for the year, and to distribute this information to all environments. This is done because there are some biological parameters that vary depending on weather conditions. In particular, we are able to simulate the snow thickness.

 $-\Pi = (\Gamma, \mu, R_{\Pi})$ is the skeleton of a functional probabilistic P system with active membranes of degree 11, whose membrane structure is $\mu = [[]_1[]_2 \dots []_10]_0$.

The set R_{Π} of rules of the system is the following (where the probabilistic constants associated with the rules have been incorporated):

* Preparation of the system to start a cycle. $r_1 \equiv t_i []_0^0 \rightarrow [t_i]_0^0, \ 1 \le i \le 10.$ $r_2 \equiv t_i []_i^0 \rightarrow [t_i]_i^-, \ 1 \le i \le 10.$

After applying the environment rules, r_{e_1} the object t_i enters from the environment carrying the information about the climatic condition of the next year to be simulated.

Each of the inner membranes labeled with 1, 2 or 10, stores information on biological parameters for each one of the then different climatic scenarios that the model envisages. The objects associated with animals should then enter the same membrane as the object t_i .

$$r_3 \equiv X_{j,y}[]_l^- \to [X_{j,y}]_k^0, \begin{cases} 1 \le j \le g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Each geographic area in which the species lives has a monthly production of food (grass).

$$r_4 \equiv \left(F[\]_k^- \to [G_4^{\alpha_4(\nu)}, \dots, G_{10}^{\alpha_{10}(\nu)}]_k^0\right)_{e_\nu}, \ \begin{cases} 1 \le k \le 10\\ 1 \le \nu \le 4. \end{cases}$$

where $\alpha_j(\nu)$ corresponds to the amount of grass produced in the area ν for the month j.

The amount of animals in the ecosystem should be controled so that it can not exceed a maximum load. This operation is performed by the objects a.

$$r_5 \equiv \left(c[\]_k^- \to [a^{0.9d_{1\nu}} e^{0.2d_{2\nu}} h]_k^0\right)_{e_\nu}, \begin{cases} 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases}$$

The following rules simulate the presence or absence of disease.

$$\begin{aligned} r_6 &\equiv d[\;]_k^- \to [d]_k^0, \; 1 \le k \le 10. \\ r_7 &\equiv [d\;h \to d_1]_k^0, \; 1 \le k \le 10. \\ r_8 &\equiv \left([d_1 \xrightarrow{m_{s_{\nu}}} d\;S]_k^0 \right)_{e_{\nu}}, \; \begin{cases} 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases} \\ r_9 &\equiv \left([d_1 \xrightarrow{1-m_{s_{\nu}}} d\;N]_k^0 \right)_{e_{\nu}}, \; \begin{cases} 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases} \end{aligned}$$

Then we have counter ${\cal R}_i$ that will allow us to synchronize the P system

$$r_{10} \equiv R_0[]_k^- \to [R_0]_k^0, \ 1 \le k \le 10.$$

$$r_{11} \equiv [R_i \to R_{i+1}]_k^0, \ \begin{cases} 0 \le i \le 5, \\ 1 \le k \le 10. \end{cases}$$

Finally, we introduce some randomness in the density control

$$r_{12} \equiv [e \xrightarrow{0.5} a]_k^0, \ 1 \le k \le 10.$$

$$r_{13} \equiv [e \xrightarrow{0.5} \#]_k^0, \ 1 \le k \le 10.$$

* Reproduction rules

Males of childbearing age

$$r_{14} \equiv [X_{j,y} \xrightarrow{1-k_1} Y_{j,y}D]_k^0, \ \begin{cases} g_1 \le j < g_2, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Females of childbearing age that reproduce

$$r_{15} \equiv [X_{j,y} \xrightarrow{k_1 \cdot k_{2_l}} Y_{j,y} Y_{0,y}^{k_3} D^{k_3+1}]_k^0, \begin{cases} g_1 \le j < g_2, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Females of childbearing age that do not reproduce

$$r_{16} \equiv [X_{j,y} \xrightarrow{^{k_1 \cdot (1-k_2_l)}} Y_{j,y}D]_k^0, \begin{cases} g_1 \le j < g_2, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Animals that are not fertile

$$r_{17} \equiv [X_{j,y} \to Y_{j,y}D]_k^0, \begin{cases} g_2 \le j \le g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Young animals that do not reproduce

$$r_{18} \equiv [X_{j,y} \to Y_{j,y}D]_k^0, \begin{cases} 1 \le j < g_2, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

* Density rules

Checking if the maximum density has been reached

$$r_{19} \equiv \left([h \ D^{d_{1_{\nu}}} a^{d_{1_{\nu}}-d_{2_{\nu}}}]_{k}^{0} \to d[h]]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} 1 \le k \le 10, \\ 1 \le \nu \le 8. \end{cases}$$
$$r_{20} \equiv \left([d \ D^{d_{1_{\nu}}} a^{d_{1_{\nu}}-d_{2_{\nu}}} \to d]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} 1 \le k \le 10, \\ 1 \le \nu \le 8. \end{cases}$$

Transformation of objects that represent animals

$$r_{21} \equiv [Y_{j,y} \to Y_{j,y}'']_k^0, \begin{cases} 0 \le j \le g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10 \end{cases}$$
$$r_{22} \equiv [Y_{j,y}'' \to Y_{j,y}']_k^0, \begin{cases} 0 \le j \le g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10 \end{cases}$$

* Feeding rules

$$r_{23} \equiv [Y'_{j,y}aG_4^{\beta_4}G_5^{\beta_5}G_6^{\beta_6}G_7^{\beta_7}G_8^{\beta_8}G_9^{\beta_9}G_{10}^{\beta_{10}} \to Z_{j,y}]_k^0, \begin{cases} 0 \le j \le g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

,

where β_i represents the need of food in month *i*.

* Natural mortality rules

Young animals that survive

$$r_{24} \equiv \left([Z_{j,y} \xrightarrow{1-m_{k,\nu}} V_{j,y}]_k^0 \right)_{e_{\nu}}, \begin{cases} 0 \le j < g_0, \\ 1 \le y \le T, \\ 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases}$$

Young animals that leave the ecosystem or die

$$r_{25} \equiv \left([Z_{j,y} \xrightarrow{m_{k,\nu}} \#]_k^0 \right)_{e_\nu}, \begin{cases} 0 \le j < g_0, \\ 1 \le y \le T, \\ 1 \le k \le 10 \\ 1 < \nu < 4. \end{cases}$$

Adult animals that survive

$$r_{26} \equiv [Z_{j,y} \xrightarrow{1-m^2} V_{j,y}]_k^0, \begin{cases} g_0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10 \end{cases}$$

Adult animals that die

$$r_{27} \equiv [Z_{j,y} \xrightarrow{m_2} \#]_k^0, \begin{cases} g_0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

Animals that reach the maximum age of the species

$$r_{28} \equiv [Y_{g_3,y} \to \#]_k^0, \ \begin{cases} 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

* Hunting mortality

Young animals that survive hunting

$$r_{29} \equiv \left([V_{j,y} \xrightarrow{1-h_{1\nu}} W_{j,y}]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} 0 \le j < g_{0}, \\ 1 \le y \le T, \\ 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases}$$

Young animals that are hunted

$$r_{30} \equiv \left([V_{j,y} \xrightarrow{h_{1_{\nu}}} \#]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} 0 \le j < g_{0}, \\ 1 \le y \le T, \\ 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases}$$

Adult animals that survive hunting

$$r_{31} \equiv \left([V_{j,y} \xrightarrow{1-h_{2\nu}} W_{j,y}]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} g_{0} \leq j < g_{3}, \\ 1 \leq y \leq T, \\ 1 \leq k \leq 10, \\ 1 \leq \nu \leq 4. \end{cases}$$

Adult animals that are hunted

$$r_{32} \equiv \left([V_{j,y} \xrightarrow{h_{2\nu}} \#]_{k}^{0} \right)_{e_{\nu}}, \begin{cases} g_{0} \leq j < g_{3}, \\ 1 \leq y \leq T, \\ 1 \leq k \leq 10, \\ 1 \leq \nu \leq 4. \end{cases}$$

* Disease mortality

$$\begin{aligned} r_{33} &\equiv [R_6 S]_k^0 \to [R_7]_k^-, \ 1 \le k \le 10. \\ r_{34} &\equiv [R_6 N \to R_7]_k^0, \ 1 \le k \le 10. \\ r_{35} &\equiv [R_6 h \to R_7]_k^0, \ 1 \le k \le 10. \\ r_{36} &\equiv [R_7]_k^- \to [\#]_k^+, \ 1 \le k \le 10. \\ r_{37} &\equiv [R_7]_k^0 \to [\#]_k^+, \ 1 \le k \le 10. \\ r_{38} &\equiv ([W_{j,y}]_l^- \xrightarrow{md_{\nu}} [\#]_k^+)_{e_{\nu}}, \begin{cases} 0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases} \\ r_{39} &\equiv ([W_{j,y}]_l^- \xrightarrow{1-md_{\nu}} [W_{j,y}]_k^+)_{e_{\nu}}, \begin{cases} 0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10, \\ 1 \le \nu \le 4. \end{cases} \end{aligned}$$

* Updating rules

$$r_{40} \equiv [W_{j,y}]_k^+ \to X_{j+1,y+1}[]_k^0, \begin{cases} 0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

$$r_{41} \equiv [Y_{j,y}]_k^+ \to [\#]_k^0, \begin{cases} 0 \le j < g_3, \\ 1 \le y \le T, \\ 1 \le k \le 10. \end{cases}$$

$$r_{42} \equiv [t]_k^+ \to R_0, F, t, c[]_k^0, \ 1 \le k \le 10. \end{cases}$$

$$r_{43} \equiv [a]_k^+ \to [\#]_k^0, \ 1 \le k \le 10.$$

$$r_{44} \equiv [d]_k^+ \to d[]_k^0, \ 1 \le k \le 10.$$

$$r_{45} \equiv [G_i]_l^+ \to [\#]_k^0, \ \begin{cases} 4 \le i \le 10, \\ 1 \le k \le 10. \end{cases}$$

$$r_{46} \equiv [t]_0^0 \to t[]_0^0$$

- $-\mathcal{M}_{0,\nu}, \mathcal{M}_{1,\nu}, \ldots \mathcal{M}_{10,\nu} \ (1 \leq \nu \leq 4)$ are strings over Γ which describe the initial multiset of objects located in the regions of μ .
 - $\begin{aligned} \mathcal{M}_{0,\nu} &= \{F, R_0, c, d\} \ \cup \ \{X_{j,1}^{q_{\nu,j}} : \ 1 \le \nu \le 4, \ 1 \le j \le g_3\}, \ \text{ for } 1 \le \nu \le 4. \\ \mathcal{M}_{k,\nu} &= \emptyset, \ \text{ for } 1 \le k \le 10 \text{ and } 1 \le \nu \le 4. \end{aligned}$

5 A software tool for simulation

A software tool under GNU GPL license [7] for simulating P systems modeling ecosystems was presented in [2]. The simulation of two real and relevant ecosystems has been achieved by using this software tool [2]. One of them is related to an endangered species (the bearded vulture) and the other one is related to an exotic and invasive species (the zebra mussel). For each one, an *ad hoc* graphic user interface (GUI) has been developed in order to configure the initial parameters of the ecosystem and collect the results of the simulation by means of tables and graphics. The simulation core that has been used is based on P-Lingua [4, 8] and pLinguaCore [4, 9]. The software tool allows two different types of users: the first one is the *designer user*, who is the responsible for defining, debugging and validating the model for the ecosystem; and the second one is the *end-user*, who is the final user of the software tool and he/she uses it for carrying out virtual experiments over the ecosystem.

One of the main problems of the software tool is the need to design, develop and maintain several different graphic user interfaces. In this paper, a new software tool, *MeCoSim* [6], has been used. MeCoSim (Membrane Computing Simulator) allows the same functionality as its predecessor, and besides the *designer user* is provided with an easy-to-use method for creating new *ad hoc* GUIs for specific ecosystem models, by means of the definition in data bases. In this sense, the development of the GUI in Java Swing (or other programming languages) has been avoided, delegating this process on the designer user. To summarize, MeCoSim offers to the users (designer and end-user) a highly customizable simulators generator to apply simulation algorithms for P systems modelling several scenarios object to study. Thus, MeCoSim is a final product that avoid the necessity of ad-hoc GUI development per each scenario, introducing enough flexibility to permit the designer user to generate a simulator adapted to the scope of the domain of study of the end-user, with the inputs, parameters and outputs he need.

The process to adapt MeCoSim to each scenario requires the definition of a configuration file. The structure of the file is provided to the designer user in order to configurate the custom simulator he wants to generate. After that, the file is processed by MeCoSim, that loads it in an embed database and generates the custom simulator that comply with the information introduced by the designer user. With this simple task done by the designer and without any software development, the end-user will get a custom simulator for his specific domain problem or case study. A change in the original model structure (desired structure of inputs, outputs or parameters) will be reflected in the simulator with the simple change of the configuration file and its reload in MeCoSim. For more information about the GUI configuration process with MeCoSim, see [6].

Figure 4 shows a snapshot of the software tool MeCoSim with an specific graphic user interface for editing the initial parameters of the model presented in this paper.

🖀 Pyrinean Chamois [alpha]																					
Ecosystem Edit Model Simulation Help																					
[Input] \Output \ Debug console \																					
Snow ' Population \ Max density population \ Biological parameters \ Antropical parameters \ Disease parameters \ Grass \																					
Zone	Specie	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8	Year9	Year10	Year11	Year12	Year13	Year14	Year15	Year16	Year17	Year18	Year19	Year20
1	1	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
2	1	11	12	13	14	15	16	17	18	19	20	21	22	23	24 25	25	26	27	28	29	30
3	1	12	13	19	15	15	18	18	20	20	21	22	23	29	25	26	27	28	29 30	30	31
5	1	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
6	1	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
7	1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
8	1	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
P SYSTEM Data: C:\ Model: C Simulated Simulation Steps by y	SYSTEM USER vata::[]bocuments and Settings[Ignacio]Escritorio]bin/rebeco]issard.ec2 todeb::Ci_Documents and Settings[Ignacio]Escritorio]bin/rebeco]isardI.pii mulated years: 1 mulated so by year: 10 teps by year: 13																				
()					1					0	1%										
(c) 2009 R	esearch (Group on	Natural	Computin	g. http://	www.gcn	.us.es														

Fig. 4. MeCoSim3: edition process for the initial parameters of the model

6 Conclusions

This paper presents the first computational model of a real ecosystem from the Catalan Pyrenees, involving the Pyrenean Chamois. The model is based on Membrane Computing. In [2], a general framework for modeling ecosystems using multienvironment P systems was presented. The rules in this framework were associated with probability functions depending on a number of parameters, such as the simulation time. The model presented in this paper can be considered as a practical application of the previously introduced framework. The model is still under the experimental validation phase. Some preliminary validation of this model has been assessed by ecologists resulting in very encouraging and promising results that will be reported elsewhere. In order to assist the validation of the model, we are developing a simulation tool called MeCoSim [6]. This software allows the designer user to specify the Graphics User Interface for a specific model by editing a configuration file.

Although the verification process is not yet completed, the authors have considered appropriate to present this first computational model of the Pyrenean Chamois in the Membrane Computing Conference.

References

- M. Cardona, M. A. Colomer, M.J. Pérez–Jiménez, D. Sanuy, A. Margalida. Modelling ecosystems using P Systems: The Bearded Vulture, a case of study. *Lecture Notes in Computer Science*, 5391 (2009), 137–156.
- M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D. Sanuy. A Computational Modeling for real Ecosystems Based on P Systems. *Natural Computing*, versión online (http://dx.doi.org/10.1007/s11047-010-9191-3).
- J.P. Crampe, J.M. Gaillard, A. Loison L'enneigement hivernal: un facteur de variation du recrutement chez l'isard (Rupicapra pyrenaica pyrenaica). *Canadian Jour*nal of Zoology, 80 (2002), 306–1312.
- M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. Lecture Notes in Computer Science, 5957 (2010), 264-288.
- M. Pioz, A. Loison, P. Gibert, D. Dubray, P. Menaut, B. Le Tallec, M. Artois, E. Gilot-Fromont. Transmission of a pestivirus infection in a population of Pyrenean chamois. *Veterinary Microbiology* 119, (2007) 19-30.
- 6. L. Valencia-Cabrera, I. Pérez-Hurtado, M.J. Pérez-Jiménez, M.A. Colomer. MecoSim: A General purpose software tool for simulating biological phenomena by means of P systems. Pre-proceedings of the IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010) In press.
- 7. GPL license: http://www.gnu.org/copyleft/gpl.html
- 8. The P-Lingua website
- http://www.p-lingua.org/
- The pLinguaCore library website http://www.p-lingua.org/wiki/index.php/PLinguaCore