
Tools for P system testing

Alexandru Ciobanu1, Raluca Lefticaru1,
Ionuţ Mihai Niculescu1, Florentin Ipate1

Department of Computer Science, University of Pitesti
Str. Targu din Vale 1, 110040 Pitesti, Romania

florentin.ipate@ifsoft.ro

Abstract. This paper presents some approaches on testing P systems
that allow building specific testing tools. The two approaches used for
automatic test case generation are based on model-checking and building
the derivation tree, respectively. The classes of P systems addressed so
far are transitional, with evolution-communication rules, and probabilis-
tic P systems, with electrical charges.

Keywords: P systems testing, model checking, derivation tree, NuSMV,
P-Lingua.

1 Introduction

The field of membrane computing, which deals with distributed and parallel
computing models called P systems, has been a rapidly growing research area
in the last ten years. Initially coined by Gheorghe Păun in [11], P systems have
been intensively studied from a computational perspective, many variants being
introduced and investigated and a substantial set of applications have been iden-
tified and modelled with such systems [12]. A special volume has been dedicated
to applications of P systems [3] and more recently models of highly complex
ecosystem phenomena have been provided [1].

Although there are promising applications and simulators developed for many
variants of P systems, there are no tools available for testing such models. Several
attempts have been made to use available model checking methods for verifying
stochastic P system [13] or testing basic classes of P systems [6], but no generic
tool has as of yet surfaced. In this paper we present several testing principles
underpinning the creation of such tools. As P-Lingua [4, 10] is increasingly be-
coming more popular and it is extending to accept various types of P systems,
we will use it for specifying and simulating P systems.

2 Previous work

A model checking-based approach for P systems testing was developed in [6] and
further extended in [7]. In this approach NuSMV [8] was used to automatically
produce the P system computation which is covering a certain rule or combina-
tion of rules. NuSMV is a symbolic model checker, used to operationally specify



a system and then to verify the correctness of the system using temporal logic
formulae [2]. Advantageously NuSMV verifies the entire state space of the model
and provides counterexamples if the specified properties are false. This feature is
exploited to develop test cases, corresponding to counterexamples, through the
following steps:

1. The P system is transformed into a Kripke structure.
2. The Kripke structure is written in NuSMV syntax.
3. The rule coverage criteria are written using temporal logic formulae.
4. These formulae are negated (e.g. “this rule will never be applied”).
5. NuSMV is run and the counterexamples provided for the negated formulae

are interpreted as test cases.

Sample output of such a process would look as followed:

Test case: s --> a,b --> b,c^2 --> c^3

Rules applied: {r1} {r2,r3} {r4}

3 Probabilistic P system testing using NuSMV

In order to create a testing application for P systems, we extended the tool
described in [6, 7] to probabilistic P systems, first considered by A. Obtulowicz
in [9]. The application uses the theory presented previously: it transforms a P
system into SMV, the language accepted by NuSMV, and runs Linear Temporal

Logic (LTL) specifications against it.
The application adds LTL specifications of a second form, to check certain

properties of the P system, for example if an object of the multiset will ever
reach n units, or will it ever be completely exhausted. The tool also expands
the capabilities of the system mentioned above by adding support for multi
membrane with different permeability properties, rules with probabilities, and
membrane polarization.

An important aspect is representing probabilistic transitions in SMV. Con-
sider a rule r and cr the probability associated with it. Let nr be the number of
times rule r is applied in a transition and N the number of times all rules, of the
same membrane as r and having the same left hand side as r, are applied in the
same transition. Here we introduce a probability margin ε and we require that:

cr − ε ≤
nr

N
≤ cr + ε.

We gate the above by the requirement N ≥ m, for m sufficiently large de-
pending on the application, to eliminate impossible scenarios.

4 Derivation tree based testing for P systems

Another approach to P systems testing involves the creation of a derivation tree
for the system and traversing the tree to read possible execution paths [5]. This



is achieved by implementing an extension of the P-Lingua framework [10]. The
tree root has the initial configuration of the P system and the children nodes
contain all subsequent configuration of the system. The children are obtained by
applying combination of rules in a maximal parallel mode.

At building the derivation tree, the rules probabilities are ignored, and all
possible combinations of rules are stored. Each node of the derivation tree stores
the multiset of the particular configuration, as well as the rules applied to acquire
that particular multiset. A constant k is used to define the maximum number
of tree levels. Once this constant is reached, the application stops building new
nodes. This is particularly useful in non terminating P system to ensure the
application halts.

Taking as an example the probabilistic P system: Π = (V, µ, w1, w2, R1, R2),

V = {a, b, c, d, e}, µ = [1[2]2]1, w1 = λ, w2 = a4, R1 = {r1 : [b]0
1

1
−→ [a]0

1
},

R2 = {r1 : [a2]02
0,4

−−→ b[c]02; r2 : [a]02
0,4

−−→ [d]02; r3 : [a]02
0,2

−−→ e[]02}, a part of the
derivation tree is given in Fig. 1.

λ, a4

b2, c2

(λ, r2

1)

a2, c2

(r2

1 , λ)

b, cd2

(λ, r1r
2

2)

a, cd2

(r1, λ)

be, cd

(λ, r1r2r3)

ae, cd

(r1, λ)

Fig. 1. Derivation tree for Π and k = 2

On the derivation tree, depth first searches are used to find paths which
(when executed) would satisfy different rule coverage criteria. All partial paths
which cover new rules are stored. The search yields, as in the first application,
a path through the P system, as well as the oracle for the particular path.
More details regarding the testing tools and some case studies are available at
http://fmi.upit.ro/evomt/psys/psys_tools.html.

5 Conclusions and future work

The tools developed work well on small and medium size P systems (for which
the state space of the corresponding NuSMV models, as described in [6, 7] have
the state space in the order of 1012). Unfortunately, as the complexity of the P



system expands, the models become extremely complex and the testing utilities
face a state explosion problem. Further work needs to be put forth in an attempt
to reduce the memory burden put on the modeling tools to allow more complex
P systems to be tested. Research is also ongoing into other simulation and model
checking tools that might have better tolerance to very large data sets and aid
the test generation.

Acknowledgments. This work was supported by CNCSIS - UEFISCSU,
project number PNII - IDEI 643/2008.

References

1. Cardona, M., Colomer, M.A., Margalida, A., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Sanuy, D.: A P system based model of an ecosystem of some scavenger birds.
In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) Membrane Computing - 10th International Workshop, WMC 2009, Revised
Selected and Invited Papers. LNCS, vol. 5957, pp. 182–195. Springer (2010)

2. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer
2(4), 410–425 (2000)

3. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing. Natural Computing Series, Springer (2006)

4. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Mart́ınez-del-Amor, M.A.,
Orejuela-Pinedo, E., Pérez-Hurtado, I.: P-Lingua 2.0: A software framework for
cell-like P systems. International Journal of Computers, Comunication and Con-
trol IV(3), 234–243 (2009)

5. Gheorghe, M., Ipate, F.: On testing P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing - 9th International
Workshop, WMC 2008, Revised Selected and Invited Papers. LNCS, vol. 5391, pp.
204–216. Springer (2009)

6. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P sys-
tems using model checking. Journal of Logic and Algebraic Programming.
DOI:10.1016/j.jlap.2010.03.007, in press (2010)

7. Lefticaru, R., Ipate, F., Gheorghe, M.: Model checking based test generation from P
systems using P-Lingua. In: Brainstorming Week on Membrane Computing (2010,
in press)

8. NuSMV Web page : http://nusmv.irst.itc.it/ (last visited, June 2010)
9. Obtulowicz, A.: Probabilistic P systems. In: Păun, G., Rozenberg, G., Salomaa, A.,

Zandron, C. (eds.) Membrane Computing - International Workshop, WMC 2002,
Revised Papers. LNCS, vol. 2597, pp. 377–387. Springer (2003)

10. P-Lingua Web page : http://www.p-lingua.org (last visited, June 2010)
11. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000)
12. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2010)
13. Romero-Campero, F.J., Gheorghe, M., Bianco, L., Pescini, D., Pérez-Jiménez,

M.J., Ceterchi, R.: Towards probabilistic model checking on P systems using
PRISM. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing - 7th International Workshop, WMC 2006, Revised, Selected,
and Invited Papers. LNCS, vol. 4361, pp. 477–495. Springer (2006)


