
On PCol Automata working in the t-mode⋆

Luděk Cienciala and Lucie Ciencialová

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova}@fpf.slu.cz

1 Introduction and definitions

PCol automata are constructed as extension of P colonies following the notion of
automata-like abstract models. P colonies and PCol automata are computational
models belonging to the family of P systems. More can reader find in [12, 13].

The model of P colony is formed from simple cells living together in a shared
environment. The cell, sometimes called agent, contains given number of objects.
To execute the programs from its set of programs it uses internal objects and
objects from environment(external objects). The programs of cells consist of
rules which are either of the form a → b, specifying that an internal object
a is transformed into an internal object b, or of the form c ↔ d, specifying
the fact that an internal object c is sent out of the cell, to the environment,
in exchange of the object d, which was present in the environment. For more
about P colonies we refer to [10, 11]. P colonies have been extensively examined
during the last years: it has been shown that these extremely simple constructs
are computationally complete computing devices even with very restricted size
parameters and with other syntactic or functioning restrictions [3, 1, 2, 5, 6, 8].

In reference to finite automaton P colony was extended by a input tape and
it changes the generating device into the accepting one ([4]). The cells of this
kind of P colony are working according to actually read symbol from the input
tape. To do this they have programs containing rule which can ”read” the input
tape. The cells execute programs in such a way to obtain the same kind of object
as they read from input.

Definition 1. A PCol automaton of capacity k and with n cells, k, n ≥ 1, is
a construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) where V is an alphabet,
the alphabet of the PCol automaton, its elements are called objects; e ∈ V is
the environmental object of the automaton; wE ∈ (V − {e})∗ is a string repre-
senting the multiset of objects different from e which is found in the environment
initially; (wi, Pi), 1 ≤ i ≤ n, is the i-th cell; and F is a set of accepting configura-

tions of the PCol automaton. For each cell, (wi, Pi), 1 ≤ i ≤ n, wi is a multiset
over V , it determines the initial contents of the cell, and its cardinality |wi| = k

is called the capacity of the system; Pi is a set of programs, where every program

is formed from k rules of the following types: (1) tape rules of the form a
T
→ b, or

⋆ Research supported in part by the Czech Science Foundation, ”GAČR”, project
201/09/P075.

a
T
↔ b, called rewriting tape rules and communication tape rules, respectively;

or (2) nontape rules of the form a → b, or c ↔ d, called rewriting (nontape) rules
and communication (nontape) rules, respectively. For each i, 1 ≤ i ≤ n, the set
of tape programs is denoted by PT

i , they are formed from one tape rule and k−1
nontape rules, the set of nontape programs which contain only nontape rules, is
denoted by PN

i , thus, Pi = PT
i ∪ PN

i , PT
i ∩ PN

i = ∅.

A configuration of PCol automaton is an (n + 2)-tuple (u; uE , u1, . . . , un),
where u ∈ V ∗ is the unprocessed (unread) part of the input string, uE ∈ (V −
{e})∗ represents the multiset of objects different from e in the environment, and
ui,∈ V ∗, 1 ≤ i ≤ n, represents the contents of i-th cell. The initial configuration

is given by (w; wE , w1, . . . , wn), the input word to be processed by the system and
the initial contents of the environment and the cells. The elements of the set F of
accepting configurations are given as configurations of the form (ε; vE , v1, . . . , vn).

The computation of a PCol automaton starts in the initial configuration,
and the configurations are changed by the cells with the application of some of
their programs. During the computation, the PCol automaton processes an in-
put word. The leftmost symbol of the non-read part of the input word is read
during a computation if at least one cell applies a tape program which introduces
the same symbol inside the cell as the symbol to be read either by rewriting or
by communication.

PCol automaton can work in many modes according to using of tape rules.
One of these modes is t-mode. In each step cells can execute only programs
with tape rule. If cell has no such program to follow actually read symbol from
the input tape, it cannot execute any of its programs. For detailed definition of
computation and more about working modes we refer to [4].

2 The capacity and the number of cells

In this section we want to examine how capacity and number of cells affect
the computation and language accepted by PCol automata. For the next com-
parison we need to refer to the definition of counter automaton [9]

Definition 2. A k-counter automaton M = (Q, Σ, δ, q0, F) consists of a finite
set Q of states, a designated initial state q0, a set F of final or accepting states
with F ⊆ Q, a finite set Σ of input symbols, and a transition function δ : Q×(Σ∪
{ε})×{0, 1,−1} → P (Q×{0, 1,−1}k). A k-counter automaton is partially blind
if for all q ∈ Q and a ∈ Σ ∪ {ε} we have that δ(q, a, u1, . . . , uk) = ∅ whenever
any ui is −1, and δ(q, a, u1, δ, uk) = δ(q, a, v1, δ, vk) for all ui, vi ∈ {0, 1}.

A configuration of M is an element of Q × Σ∗ × Z
k. If (q′, v1, . . . , vk) is in

δ(q, a, u1, . . . , uk) and (q, aw, y1, . . . , yk) is configuration with sgn(ui) = sgn(yi)
for 1 ≤ i ≤ k, (where for an integer x sgn(x) = 1, 0, or −1 if x > 0, x = 0, or
x < 0, respectively), then we write (q, aw, y1, . . . , yk) ⊢ (q′, w, y1+v1, . . . , yk+vk).
If a = ε the transition is called an ε-transition. The language accepted by M is
L(M) = {w ∈ Σ∗|(q0, w, 0, . . . , 0) ⊢∗ (q, ε, 0, . . . , 0) for any q ∈ F}.

Theorem 1. For any partially blind 1-counter automaton M without ε-transi-

tions, there exists PCol automaton Π with capacity c = 4 such that L(M) =
L(Π).

Proof. (Sketch) Let M = (Q, Σ, δ, q0, F) be a partially blind 1-counter automa-
ton without ε-transitions.

We construct PCol automaton Π = (V, e, wE , (w1, P1), F
′) such that L(M) =

L(Π), where we = ε - the initial content of environment we is formed only from
copies of object e; w1 = q0eec - the initial content of the cell at the beginning of
computation; F ′ = {(ε, ε, qfαβc) | qf ∈ F, α ∈ Σ, β ∈ {e, c}}; for all qr, qs ∈ Q,
a ∈ Σ and x ∈ {0, 1,−1}, if (qs, x) ∈ δ(qr, a), we add to P1 following programs:

(1)
〈

qr
T
→ a; α → qs; β ↔ c; c → c

〉

if x = −1;

(2)
〈

qr
T
→ a; α → qs; β → c; c ↔ e

〉

if x = 1 and

(3)
〈

qr
T
→ a; α → qs; β → e; c → c

〉

if x = 0, where α ∈ Σ ∪ {e}, β ∈ {e, c}.

The programs in the cell are executed in the same sequence and have the same
effect to configuration of the cell and to the number of objects c placed in
the environment as transitions have to the state of counter automaton M and
to the number stored in the counter.

Corollary 1. To every partially blind n-counter automaton M without ε-tran-

sitions there exists PCol automaton Π with capacity 2n+2 and one cell working

in t-mode such that L(M) = L(Π). To every partially blind deterministic n-

counter automaton M without ε-transitions there exists PCol automaton Π with

capacity 4 and n cells working in t-mode such that L(M) = L(Π).

Theorem 2. The family of languages accepted by PCol automata with one cell

working in t-mode are subset of context-sensitive languages.

Proof. (Idea) In the first phase Turing machine replaces symbols in the tape by
new symbols formed from two parts. The first part corresponds to the original
symbol in the tape, the second part describes objects in the environment. The
content of the cell will be coded in the state of Turing machine. The environ-
mental symbols we don’t take into account. Turing machine simulates executing
the programs as follows: it nondeterministically chooses one of possibly applica-
ble programs (with information about content of cell and actual input symbol);
if rules in the program are rewriting Turing machine changes state and continues
with choosing another program; if one or more rules are communication, machine
looks for external objects to exchange them with internal objects; if Turing ma-
chine successfully simulates executing of the program it marks the current input
symbol as read; if simulation cannot be finished, machine chooses program again.
When the cell is in the final configuration, machine controls unread symbol and
objects in the environment. It stops the computation if the PCol automaton is in
the final configuration or if there is some unread symbol continue computation.

3 Conclusion

This contribution is dedicated to PCol automata with one cell working in t-
mode. We set some boundaries of family of languages accepted by this type of
PCol automata - this family is subset of context-sensitive languages. The lan-
guages which can be accepted by partially blind one-counter automata without ε

transitions can be accepted with PCol automata with one cell working in t-mode.

References

1. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Comput-
ing and Informatics 27, 481-496 (2008)

2. Cienciala, L. Ciencialová, L., Kelemenová, A.: On the number of agents in P
colonies. In: Eleftherakis G. et. al.(eds.) Membrane Computing. 8th International
Workshop, WMC 2007. Thessaloniki, Greece, June 25-28, 2007., LNCS 4860,
Springer-Verlag, Berlin-Heidelberg, 193-208 (2007).

3. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, Gy.: Variants of P
colonies with very simple cell structure. International Journal of Computers, Com-
munication and Control 4(3), 224-233 (2009)

4. Ciencialová, L. Cienciala, L., Csuhaj-Varjú, E., Vaszil, Gy.: PCol Automata: Recog-
nizing Strings with P Colonies, Report of Eight Brainstorming week on membrane
computing, Sevilla (2010)

5. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, Gy.: Computing
with cells in environment: P colonies. Journal of Multi-Valued Logic and Soft
Computing 12, 201-215 (2006)

6. Csuhaj-Varjú, E., Margenstern, M., Vaszil, Gy.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H-J. et. al.(eds.) Membrane Computing. 7th
International Worskhop, WMC 2006, Leiden, The Netherlands, July 17-21, 2006.
LNCS 4361, Springer-Verlag, Berlin-Heidelberg, pp. 352-366 (2007)

7. Csuhaj-Varjú, E., Oswald, M., Vaszil, Gy.: P automata. Chapter 6, In: Păun, Gh.,
Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing,
Oxford University Press, 144-167 (2010)

8. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proc. In: Ciobanu, G., Păun, Gh. (eds.) 1st Intern. Workshop
on Theory and Application of P Systems, Timisoara, Romania, 49-56 (2005)

9. Greibach, S.: Remarks on Blind and Partially Blind One-way Multicounter Ma-
chines. Theoretical Computer Science 7, 311-324 (1978)

10. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. In: Bedau, M. et. al.(eds.) Workshop and Tutorial Pro-
ceedings. Ninth International Conference on the Simulation and Synthesis of Living
Systems (Alife IX), Boston Mass, 82-86 (2004)

11. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, Oxford University Press,
584-593 (2010)

12. Păun, Gh.: Membrane Computing – An Introduction. Springer-Verlag, Berlin
(2002)

13. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing, Oxford University Press, (2010)

