
On the Expressive Power of Membrane Systems

Working in Accepting Mode

Roberto Barbuti1, Andrea Maggiolo-Schettini1, Paolo Milazzo1, and
Simone Tini2

1 Dipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy. Email: {barbuti,maggiolo,milazzo}@di.unipi.it

2 Dipartimento di Informatica e Comunicazione, Università dell’Insubria
Via Carloni 78, 22100 Como, Italy. Email: simone.tini@uninsubria.it

Abstract. Membrane systems can be seen either as generators or as
acceptors of multiset languages. The aim of this paper is to study the
expressive power of membrane systems working in accepting mode, and
to compare the results with those on membrane systems working in gen-
erating mode, which are mostly well-known in the literature. As regards
the expressive power, determinism, presence of promoters and of coop-
erative rules are considered.

1 Introduction

Membrane systems (P systems) were introduced by Paun in [10] as distributed
parallel computing devices inspired by the structure and the functioning of cells.
In the extension of [3] the application of rules may be conditioned by the presence
of promoter objects. A promoter does not participate in the application of rules,
and a single promoter may enable the application of several rules and multiple
applications of each one of these rules. P systems with promoters have been
shown to be universal even when non-cooperative rules are considered [3]. The
same holds for P systems without promoters, but with cooperative rules [11].

In universality proofs P systems based on multiset rewriting rules (transition
P systems) are usually seen as multiset generators. A computation of a P system
gives as output a multiset, and the set of all multisets given as output by different
computations of a system are taken as the multiset language generated by the
system. An alternative view considers P systems as multiset acceptors. Given
a multiset as input, the computation of a P system may take to an accepting
state. The set of accepted multisets constitutes the multiset language accepted
by the P system. In this paper we are interested in studying the expressive power
of P systems working in accepting mode. In particular, we consider classes of
P systems that are discriminated by admitting, or not, promoters, cooperative
rules and nondeterminism.

Different notions of P systems working in generating and accepting modes
have been considered, for instance in [9, 12] from the point of view of complexity.
A variant of P systems working in accepting mode and with symport/antiport

rules, called P automata, have been introduced in [4, 8]. Generating and accept-
ing modes have been considered and compared also in the context of regulated
rewriting [5–7].

2 Membrane Systems with Promoters

In this section we recall the definition of P systems with promoters and introduce
notions of P systems accepting and generating multiset languages.

2.1 Definition

A membrane system, also called P system, consists of a hierarchy of membranes

that do not intersect, with a distinguishable membrane, called the skin mem-

brane, surrounding them all. As usual, we assume membranes to be labeled by
natural numbers. Given a set of objects V , a membrane m contains a multiset
of objects in V , a set of evolution rules, and possibly other membranes, called
child membranes (m is also called the parent of its child membranes). A rule in a
membrane m can be applied only to objects in m. The rule must contain target
indications, specifying the membranes where each object produced by applying
the rule is sent. The new objects either remain in m, or can be sent out of m,
or can be sent into one of its child membranes, precisely identified by its label.
Formally, the products of a rule are denoted with a set of pairs of the following
forms:

– (v, here), meaning that the multiset of objects v produced by the rule remain
in the same membrane m;

– (v, out), meaning that the multiset of objects v produced by the rule are sent
out of m;

– (v, inl), meaning that the multiset of objects v produced by the rule are sent
into the child membrane l.

An evolution rule may have some promoters that are objects required to be
present in the membrane m in order to enable the application of the rule. We
can assume that all evolution rules have the following form:

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|p

where u is the multiset of objects consumed by the rule, {l1, . . . , ln} is a set
of membrane labels, vh, vo, v1, . . . , vn are the objects (grouped in multisets by
target) produced by the rule, and p is the multiset of promoters of the rule.
Notice that all objects mentioned in the rules are in V , therefore an object may
appear in the reactants, in the products, and in the promoters of the rules. The
size of the left–hand side u of an evolution rule is called the radius of such a
rule. If a P System contains rules of radius greater than one, then it is called a
cooperative system. Otherwise, it is called non–cooperative.

Application of evolution rules is done with maximal parallelism, namely at
each evolution step a multiset of instances of evolution rules is chosen non–
deterministically such that no other rule can be applied to the system obtained
by removing all the objects necessary to apply all the chosen rules. The applica-
tion of rules consists of removing all the reactants of the chosen rules from the
system and adding the products of the rules by taking into account the target
indications. Promoters are not consumed by the application of the correspond-
ing evolution rule, thus implying that the presence of a single occurrence of a
promoter can enable the application of more than one rule in each maximally
parallel evolution step.

A P system has a tree-structure in which the skin membrane is the root
and the membranes containing no other membranes are the leaves. We assume
membranes labels to be unique: they are assigned at the beginning of the evolu-
tion by counting the membranes encountered during a breadth-first visit of the
tree–structure, with 1 as the label of the skin membrane.

Now, we formally define P systems with promoters.

Definition 1. A membrane system Π is given by

Π = (V, µ, w1, . . . , wn, R1, . . . , Rn)

where:

– V is an alphabet whose elements are called objects;
– µ ⊂ IN × IN is a membrane structure, such that (l1, l2) ∈ µ denotes that the

membrane labeled by l2 is contained in the membrane labeled by l1;

– wj with 1 ≤ j ≤ n are strings from V ∗ representing multisets over V asso-

ciated with the membranes 1, . . . , n of µ;

– Rj with 1 ≤ j ≤ n are finite sets of evolution rules associated with the

membranes 1, . . . , n of µ.

In this paper we assume P systems to be closed computational devices,
namely we assume that objects cannot be sent out of the skin membrane (i.e.rules
sending objects out are not allowed in the skin membrane) and objects cannot
be received by the skin membrane from outside.

A computation of a P system is a sequence of maximally parallel evolution
steps. A computation is valid if and only if the sequence of computation steps
is finite and leads to a final configuration, namely a configuration in which no
evolution rules can be further applied.

A P system is said to be deterministic if it may perfom only one computation
(either valid or not). This happens when at each step there is only one maximal
multiset of applicable evolution rules.

We show in Figure 1 an example of P system in which all the main features
of the formalism are used. In the figure, membranes are depicted as boxes con-
taining evolution rules, objects and inner membranes. The label of a membrane
is at a corner of the corresponding box. Exponents are used to have a compact
representation of multiple occurrences of an object in a multiset. For example,

anpkb represents the multiset consisting of n occurrences of a, k occurrences of
p and one occurence of b. Symbol λ denotes the empty multiset.

The P system in the figure performs a computation consisting of k steps. At
each step the number of a’s is halved and one p is sent into membrane 2, where
it is cancelled. The output of the computation is hence a

⌈ n

2k
⌉
q.

1

2

pq → (q, here)(p, in2)

p → λ

aa → (a, here)|p

anpkq

Fig. 1. An example of P system with promoters.

Let us assume that V is partitioned into sets Σ and C, where C is called as
the set of control objects. From [1] it follows that any P system with promoters
Π can be translated into an equivalent P system Π ′ having a (flat) membrane
structure that consists only of the skin. The idea is to obtain the alphabet of the
control objects in Π ′ by enriching the alphabet of the control objects in Π with
objects labeled with indexes of membranes in Π to represent objects of Π that
are placed in some inner membrane. It turns out that Π and Π ′ are equivalent in
the sense that each of them can mimic the behavior of the other, evolution step
by evolution step. More precisely, the skin membranes of Π and Π ′ contain the
same multisets over Σ after each computation step. An analogous technique was
previously used in [2, 13] but with different classes of P systems. As an example,
we show, in Figure 2, the result of flattening the P system with promoters given
in Figure 1.

For the sake of precision, the class of P systems considered in [1] is slightly
different: (i) promoters of an evolution rule are given as a set rather than a
multiset, (ii) membranes are enriched with an interface that filters the objects
that can be received from the external environment, and (iii) also rule inhibitors
and dissolving rules are considered. As regards (i), it is easy to see that the way
in which promoters are given does not influence the flattening technique. As
regards (ii), membrane interfaces are used in [1] to ensure compositionality. Here,
we consider closed computational systems, hence we do not allow interactions
with the external environment. As regards (iii), it is easy to see that inhibitors
and dissolving rules are not introduced by the flattening technique, hence the

1

pq → (qp2, here)

p2 → λ

aa → (a, here)|p

anpkq

Fig. 2. The result of flattening the P system given in Figure 1.

flat version of a P system of the class we consider here is still in the same class.
To sum up, we have that the following result holds.

Theorem 1. Every P system with promoters can be translated into an equiva-

lent P system whose membrane structure consists only of the skin membrane.

Proof. Follows from results in [1]. ⊓⊔

If one gives a suitable notion of size of a P system taking into account the
cardinality of the set of objects and of the set of rules, one can infer that the
flattening technique in [1] takes a P system of size s to a P system of size o(s).

We shall always assume flat P systems in our proofs, consequently we shall
always assume the here particle for products of evolution rules (e.g. we will write
a → b for a → (b, here)).

In the following we shall study how determinism, presence of promoters,
and cooperative rules have an influence on the expressive power of P systems.
We shall use the following notations for the different classes of P systems:
P (coo, ndet, pro) denotes the class of P systems admitting cooperation, non de-
terminism and promoters, we replace coo with ncoo in the classes where cooper-
ative rules are not admitted, ndet with det in the classes where nondeterminism
is not admitted, and pro with npro in the classes where promoters are not ad-
mitted.

2.2 Membrane Systems and Multiset Languages

P systems can deal with multiset languages. A multiset language [4] is a set of
multisets over a given alphabet. It might be obtained from a language of strings
by applying the Parikh mapping to each string in the language. The Parikh
mapping takes a string into a vector of natural numbers, in which each element
corresponds to the number of occurrences in the string of one of the alphabet
symbols. After application of the Parikh mapping, information on the ordering
of symbols in the strings of the language is lost.

Among the most important classes of multiset languages we mention the
class obtained by applying the Parikh mapping to all context free languages of

strings, denoted PsCF , that coincides with the class obtained by applying the
Parikh mapping to all regular languages, denoted PsREG. We mention also the
class obtained by applying the Parikh mapping to all recursively enumerable lan-
guages of strings, denoted PsRE. Note that PsRE is the class of all recursively
enumerable sets of multisets (represented as sets of vectors of natural numbers).

A P system can be used either as an acceptor or as a generator of a multiset
language over Σ. In the first case, a multiset over Σ is inserted in the skin
membrane of the P system and the result of its computations says whether such
a multiset belongs to the multiset language accepted by the P system or not. In
the second case the P system has a fixed initial configuration and can give as
results (possibly in a non-deterministic way) all the possible multisets belonging
to a given multiset language.

Let us formalise the notion of P system used as language acceptor.

Definition 2. A flat acceptor P system over an alphabet Σ is a P system Π =
(Σ ∪ C ∪ {T }, ∅, w1, R1), where:

– C is a set of control objects such that Σ ∩ C = ∅;

– T is a special object not contained in Σ ∪ C;

– w1 is a multiset of objects in C;

– A multiset w of objects over Σ is accepted by Π iff when we add w to w1

then a final configuration can be reached with T appearing in the membrane.

We remark that one could define equivalent notions of acceptor P systems by
assuming that a multiset is accepted if and only if a final configuration can be
reached (by ignoring the presence of T). We can simulate this simply by adding
T to w1 and by ensuring that there is no rule in R1 using such a special object.

We denote the language accepted by a P system Π as Ps(Π) (as Parikh
set). Moreover, we denote the set of languages accepted by a class of P systems
by adding prefix Ps and subscript a in the notation of the class itself as in the
following example: we use PsPa(ncoo, ndet, pro) to denote the set of languages
for which there exists an acceptor in the class P (ncoo, ndet, pro).

Now we formalise the notion of P system used as language generator.

Definition 3. A flat generator P system over an alphabet Σ is a P system

Π = (Σ ∪ C, ∅, w1, R1), where:

– C is a set of control objects such that Σ ∩ C = ∅;

– w1 is a multiset of objects in C;

– a multiset w of objects over Σ is generated by Π if and only if there exist

a multiset wC
o of objects over C and a final configuration that can be reached

having w ∪ wC
o as multiset of objects.

Note that also in the case of generator P systems there exist other equiva-
lent definitions that could be considered (and that have been considered in the
literature). For instance, one could use a special membrane to collect the output
of the system, or could send the output out of the skin membrane.

PsPa(coo, ndet, pro) PsPa(coo, ndet, npro) PsPa(ncoo, ndet, pro)

‖ ‖ ‖⇑ ⇑ ⇑

PsRE PsPg(coo, ndet, pro) PsPg(coo, ndet, npro) PsPg(ncoo, ndet, pro)=∗ =∗ =∗

∪∗

PsPg(ncoo, ndet, npro)

∪

L1

PsPa(ncoo, ndet, npro)

‖

‖

L3

‖

PsRE PsPa(coo, det, pro) PsPa(coo, det, npro) PsPa(ncoo, det, pro) PsPa(ncoo, det, npro)= ⇔
= ⊃ ⊃

∪ ∪ ∪ ∪

L2 PsPg(coo, det, pro) PsPg(coo, det, npro) PsPg(ncoo, det, pro) PsPg(ncoo, det, npro)= = = =

Fig. 3. Relationships among classes of languages accepted and generated by the classes
of P systems considered in this paper.

As for acceptor P systems, we denote the language generated by a P systems
Π as Ps(Π), and we introduce a notation for the set of languages generated by
P systems of a certain class. In this case we replace subscript a with subscript
g as in the following example: we use PsPg(ncoo, ndet, coo) to denote the set of
languages for which there exists a generator in the class P (ncoo, ndet, coo).

3 On the Power of Cooperation, Promoters and

Non-determinism in Acceptor P Systems

In this section we study the expressiveness of several classes of acceptor P Sys-
tems. Our results are summarized in Figure 3, where we report original results
over acceptor P systems and we recall results over generator P Systems that are
well known in the literature (see, for instance, [3] and [11]). Results known in
the literature are marked with ”∗”. Classes L1,L2 and L3 will be defined later.

The proofs of some results will consist in the definition of an encoding of
a class of P systems C into another class C′. In such a case, if L is the set
of multiset languages that are accepted (resp. generated) by P Systems in C,
and L′ is the set of multiset languages that are accepted (resp. generated) by P
Systems in C′, we write L ⇒ L′. Moreover, we write L ⇔ L′ when both L ⇒ L′

and L′ ⇒ L.

Our first three theorems (Thms. 2, 3, 4) show that PsPg(ncoo, ndet, pro) ⇒
PsPa(ncoo, ndet, pro), PsPg(coo, ndet, pro) ⇒ PsPa(coo, ndet, pro), and, finally,
PsPg(coo, ndet, npro) ⇒ PsPa(coo, ndet, npro). This implies the universality of
these three classes of acceptors. If one gives a suitable notion of size of a P
system taking into account the cardinality of the set of objects and of the set of
rules, one can infer that these encodings take a generator of size s to an acceptor
of size o(s). Formal proofs of these results are omitted here for lack of space.

In the following, given a multiset of objects v, we shall write v′ to denote the
multiset {a′ | a ∈ v}, v′′ to denote the multiset {a′′ | a ∈ v}, and so on.

Theorem 2. PsPg(ncoo, ndet, pro) ⇒ PsPa(ncoo, ndet, pro).

Proof. Given any generator Π in P (ncoo, ndet, pro), we construct an equivalent
acceptor Πa in P (ncoo, ndet, pro). By Thm. 1 we can assume that Π is flat. Let
Π = (Σ∪C, ∅, w, R). Also Πa will be flat, of the form (Σa∪Ca∪{T }, ∅, wa, Ra).
The idea is that Πa embeds Π and, for any input multiset u for Πa, we exploit Π

to generate a multiset v in Ps(Π) and, then, we compare u with v: if they coincide
then Πa accepts u. The non-determinism ensures that for every u ∈ Ps(Π) there
is an execution by Πa accepting it.

Actually, when Π is embedded into Πa, all initial objects in w and all objects
mentioned in the rules in R are primed, in order to distinguish them from the
input of Πa, and are considered as control objects. Hence, we have that Σa = Σ,
Ca ⊇ Σ′ ∪C′ and wa ⊇ w′. Then, in the construction of Πa we have to face two
problems. The first problem is that we must be able to check for termination
of Π in order to ensure to compare with the input of Πa an actual multiset in
Ps(Π) rather than something that is the result of a partial execution of Π . The
second problem is that we must implement the comparison.

To these purposes, let us add two fresh control objects to Ca: s, which triggers
the comparison, and g, which is initially in wa, is produced by all rules derived
from Π and prevents the production of s. So, first of all Ra contains all rules:

RΠ = {a′ → v′g|p′ | a → v|p is a rule in R}

Then, Ra contains the following set of rules, denoted R1, where also x, x′, 1, 2
are fresh objects in Ca and x and 1 are also in wa:

x → x′|1g x → s|2 x′ → x|2

g → λ 1 → 2 2 → 1|x′

Sets RΠ and R1 are such that some instances of g are in Πa as long as rules
in RΠ are applied. When no rule in RΠ can be applied, which simulates the
termination of the execution by Π , no occurrence of g is anymore in Πa. This
makes the rule x → x′|1g no longer applicable. Notice that Πa either contains
both 1 and x, or it contains both 2 and x′. In the former case, since x → x′|1g

cannot be applied and 2 is produced by 1 → 2, after one computation step s is
produced by x → s|2 and the comparison is triggered. In the latter case, x and
1 are produced by x′ → x|2 and 2 → 1|x′ , respectively, and we come back to the
previous case. Finally, let us add to Ca also the objects 0, 1, 2 and 3 and the set
Ĉ consisting of the capitalized versions of the symbols in Σ ∪ Σ′. Moreover, let
us add 0 and T to wa. The comparison of the multiset generated by the rules in

RΠ with the input is performed by the following set of rules (denoted R2):

0 → 1|s 1 → 2 2 → 3 { 3 → 1|Taa′ | a ∈ Σ}

{ a → a|1 | a ∈ Σ } { a → A|1 | a ∈ Σ }

{ a′ → a′|1 | a ∈ Σ } { a′ → A′|1 | a ∈ Σ }

{T → λ|AB2 | A, B ∈ Ĉ } {T → λ|A′B′2 | A′, B′ ∈ Ĉ }

{T → λ|A3 | A ∈ Ĉ } {T → λ|A′3 | A′ ∈ Ĉ } {T → T |AA′3 | A, A′ ∈ Ĉ }

{A → λ|3 | A ∈ Ĉ } {A′ → λ|3 | A′ ∈ Ĉ }

Objects 0, 1, 2 and 3 are used to sequentialize different phases of the compari-
son. In particular, the rule consuming 0 starts the comparison, and it is triggered
by s when the rules in RΠ are no longer applicable.

Rules promoted by 1 transform a non-deterministically chosen portion of the
objects of the input multiset and of the multiset generated by RΠ into their
capitalized version. Rules promoted by 2 check that at most one object of each
of the two multisets to be compared has been capitalized, otherwise they replace
T with λ. Rules promoted by 3 check that at least one object of each of the
two multisets to be compared has been capitalized, and that such two objects
are one the primed version of the other. Moreover, the capitalized objects are
deleted. These three phases remove one object from the input multiset and the
corresponding primed one from the multiset generated by RΠ , and they are
repeated until there are pairs of corresponding objects in the two multisets and
T has not been removed. Such a control is performed by the promoters of rules
consuming 3.

Summarizing, Σa = Σ, Ca = Σ′ ∪ C′ ∪ Ĉ ∪ {0, 1, 2, 3, x, x′, 1, 2, g, s}, wa =
w′ ∪ {0, 1, x, g, T} and Ra = RΠ ∪ R1 ∪ R2. ⊓⊔

Theorem 3. PsPg(coo, ndet, pro) ⇒ PsPa(coo, ndet, pro).

Proof. Following the proof of Thm. 2, given any generator Π in P (coo, ndet, pro)
we construct an acceptor Πa in P (coo, ndet, pro) that embeds Π . The acceptor
Πa can be constructed exactly as in the proof of Thm. 2. Howewer, since here we
can exploit cooperative rules, the set of rules R2 used in the proof of Thm. 2 to
implement the comparison between the input of Πa and the multiset generated
by RΠ can be replaced by the following rules:

{aa′ → λ|s | a ∈ Σ} ∪ {aT → λ|s | a ∈ Σ} ∪ {a′T → λ|s | a ∈ Σ}

In this case the comparison requires only one computation step. ⊓⊔

Theorem 4. PsPg(coo, ndet, npro) ⇒ PsPa(coo, ndet, npro).

Proof. Also in this case we exploit the generator Π in P (coo, ndet, npro) to build
an equivalent acceptor Πa in P (coo, ndet, npro). By Thm. 1 we can assume

that Π is flat. Let Π = (Σ ∪ C, ∅, w, R). Also Πa will be flat, of the form
(Σa ∪ Ca ∪ {T }, ∅, wa, Ra). As in the proof of Thm. 2, we rename all objects in
Π so that Σa = Σ, Ca ⊇ Σ′ ∪ C′, wa ⊇ w′, and we introduce a fresh control
object s in Ca triggering the comparison between the input multiset of Πa and
the multiset generated by the rules in Πa derived from those in Π . Here s is
triggered by another control object t ∈ Ca, trough the rule

t → rs

where also r is a fresh object in Ca. The idea is that t is initially in wa and
the other rules in Ra will ensure that in all computations leading to a final
configuration with T in the membrane, then this rule fires only after the rules
derived from those in Π have generated their multiset.

Acceptor Πa performs a loop with 3 steps, until s is produced from t by rule
t → rs. The sequence of these 3 steps simulates a single computation step by Π .
At the first step in the loop, the following set of rules R1

Π may fire:

{u′ → v′′v′′′, tu′ → v′′v′′′t′ | u → v is a rule in R}

Firing tu′ → v′′v′′′t′ prevents firing t → rs and, as a consequence, the production
of s. Object t′ is in Ca and serves to produce t once more.
At the second step, the following set of rules R2

Π may fire:

{a′′′rT → λ | a ∈ Σ} ∪ {t′ → t′′} ∪ {a′′ → a′′′′ | a ∈ Σ}

The rules in the first set check that s has not been produced (note that s can
be produced only together with r) if the computation by Π has not terminated
yet. More precisely, if s has been already produced and the computation by Π

has not terminated yet, T is removed.
At the third step the following set of rules R3

Π may fire:

{a′′′a′′′′ → a′ | a ∈ Σ} ∪ {t′′ → t}

so that the first step can begin once more.
When Πa exits from the loop, which simulates the termination by Π , s can be
exploited for the comparison, which is implemented by the following set of rules
R1:

{saa′ → s | a ∈ Σ} ∪ {saT → λ | a ∈ Σ} ∪ {sa′T → λ | a ∈ Σ}

Summarizing, Σa = Σ, Ca = {a′, a′′, a′′′, a′′′′ | a ∈ Σ ∪ C} ∪ {r, s, t, t′, t′′},
wa = w′ ∪ {t, T }, Ra = {t → rs} ∪ R1

Π ∪ R2
Π ∪ R3

Π ∪ R1. ⊓⊔

From our first three theorems, the following results follow.

Corollary 1. It holds that:

– PsPg(ncoo, ndet, pro) ⊆ PsPa(ncoo, ndet, pro),
– PsPg(coo, ndet, pro) ⊆ PsPa(coo, ndet, pro),
– PsPg(coo, ndet, npro) ⊆ PsPa(coo, ndet, npro).

Let us prove now that if we admit neither promoters nor cooperative rules,
then nondeterministic acceptors and deterministic acceptors have the same ex-
pressive power, and are less expressive than nondeterministic generators. To this
purpose, we characterize both PsPa(ncoo, ndet, npro) and PsPa(ncoo, det, npro).

Given a set of objects Σ and A, N ⊆ Σ, let LA,N and LN denote the following
multiset languages:

LA,N = {u | A ∩ u 6= ∅ and N ∩ u = ∅}, LN = {u | N ∩ u = ∅} .

Let L1 be the class L1 = {LA,N | A, N ⊆ Σ for some set of objects Σ} ∪
{LN | N ⊆ Σ for some set of objects Σ}.

Theorem 5. PsPa(ncoo, ndet, npro) = PsPa(ncoo, det, npro) = L1.

Proof. First of all we prove that L1 ⊆ PsPa(ncoo, det, npro). Given a set of
objects Σ and sets A, N ⊆ Σ, an acceptor for LA,N has no control object and
rules {a → T | a ∈ A} and {b → b | b ∈ N}. An acceptor for LN contains
initially an occurrence of T and has rules {b → b | b ∈ N}.
It remains to prove that PsPa(ncoo, ndet, npro) ⊆ L1. Assume any acceptor
Π ∈ P (ncoo, ndet, npro). If it contains a rule of the form T → u, for any u ∈ Σ∗,
then Ps(Π) = ∅, and ∅ ∈ L1 (∅ = LΣ). Otherwise, let G be the graph having a
node for each object in Σ ∪ C and an arch from a to b if there is a rule a → u

with b ∈ u. Let N be the set of the objects a ∈ Σ such that all paths from a

are infinite, meaning that there exists an object a′ such that a → · · · → a′ and
a′ → · · · → a′, and let A be the set of the objects a ∈ Σ such that at least
one path from a is finite and leads to T , namely has the form a → · · · → T .
If T is an initial object in Π then a multiset is accepted iff it gives rise to a
finite computation, because no rule can remove T and the final configuration, if
reached, contains T for sure. Therefore, Ps(Π) = LN . If T is not initially in Π ,
then a multiset is accepted iff it gives rise to a finite computation that introduces
T in one of its steps. Therefore, Ps(Π) = LA,N . ⊓⊔

Corollary 2. PsPg(ncoo, ndet, npro) ⊃ PsPa(ncoo, ndet, npro).

Proof. Follows from results in [11], where P systems without cooperative rules
and with the output interpreted as a natural number are proven to be able to
generate semilinear set of numbers (Theorem 3.3.2). In the proof of the theorem
a translation of context free grammars into P systems without cooperation is
given which implies that PsREG ⊆ PsPg(ncoo, ndet, npro). It is obvious that
L1 ⊂ PsREG. (Recall that PsREG = PsCF .) ⊓⊔

Let us switch to deterministic generators and acceptors. In this case the ex-
pressive power of generators is quite poor, and equivalent to the class of multiset
languages consisting of at most one multiset. Let L2 = {{w} | w is a multiset}∪
{∅}.

Proposition 1. PsPg(ncoo, det, pro) = PsPg(coo, det, pro) = PsPg(ncoo, det, npro) =

PsPg(coo, det, npro) = L2.

Proof. The initial configuration of a generator P system is fixed. Determinism
implies that there is one only possible execution. If such an execution terminates,
then it gives the only multiset of the language as output, otherwise the generated
language is empty. Any language consisting of one multiset u can be generated
by means of a non-cooperative rule without promoters a → v at the first step,
where a is a control object initially in the P system. Cooperation and promoters
do not increase expressiveness. ⊓⊔

We already know that PsPa(ncoo, det, npro) = L1. Let us characterize the
class PsPa(ncoo, det, pro), which turns out to be more expressive.

Let L3 denote the least class of multiset languages including all sets {an|n ≥
k} for every object a and every k ∈ IN, closed by complementation, finite union
and finite intersection.

Let us write u
R
→ v to denote that by performing a multiset of rules R we

rewrite a multiset of objects u into a multiset of objects v. Let us write u |= r if
a multiset of objects u triggers a rule r.

Theorem 6. PsPa(ncoo, det, pro) = L3.

Proof. Let us prove first that PsPa(ncoo, det, pro) ⊆ L3. Let Π be an acceptor
in P (ncoo, det, pro). By Thm. 1 we can assume that Π is flat. Let Π = (Σ ∪C ∪
{T }, ∅, w, R). Assume that R = {ri | i ∈ I}, with each ri of the form ai → ui|pi

.
Let m = max {h | ∃i ∈ I, b ∈ Σ. bh ∈ pi}.
To prove that Ps(Π) ∈ L3 it is enough to prove that if ahu ∈ Ps(Π) for some
a ∈ Σ, u ∈ Σ∗ and h ≥ m, then also ah+1u ∈ Ps(Π).
Assume that ahu is accepted by Π by performing n computation steps, for some
n ∈ IN. More precisely, there exist n multisets T1, . . . , Tn, with Tj = {r

ni,j

i | i ∈

I}, and n + 1 multisets of objects u0, u1, . . . , un such that u0
T1→ u1

T2→ · · ·
Tn→ un,

u0 = ahu, T ∈ un and un 6|= ri for any i ∈ I.
Let v0 = ah+1u. We can prove that there exist n multisets T ′

1, . . . , T
′
n, with

T ′
j = {r

n′

i,j

i | i ∈ I}, and n multisets of objects v1, . . . , vn such that v0
T ′

1→ v1
T ′

2→

· · ·
T ′

n→ vn, vn 6|= ri for any i ∈ I, ni,j ≤ n′
i,j and ni,j = 0 ⇒ n′

i,j = 0 for each
i ∈ I and 1 ≤ j ≤ n, and, finally, vj ⊇ uj and bx ∈ uj and bx+y ∈ vj with y > 0
and bx+y 6⊆ uj imply x ≥ m for each 0 ≤ j ≤ n.
In fact, we know that v0 ⊇ u0 and that bx ∈ u0 and bx+y ∈ v0 with y > 0
and bx+y 6⊆ u0 imply that b is a, and, therefore, x = h ≥ m. Now, given any
0 ≤ j ≤ n, assume that vj ⊇ uj and that bx ∈ uj and bx+y ∈ vj with y > 0
and bx+y 6⊆ uj imply x ≥ m. This implies that vj and uj promote the same
rules. Therefore, if j = n, since uj 6|= ri for any i ∈ I, we infer that also
vj 6|= ri for any i ∈ I. If j < n then vj ⊇ uj implies that a computation step

vj

T ′

j

→ vj+1 with n′
i,j ≥ ni,j actually exists. Since uj and vj promote the same rules

and all rules are non-cooperative, we also infer that ni,j = 0 implies n′
i,j = 0.

Moreover, uj+1 = (uj ∩ {b | b 6= ai for any i with ni,j > 0})∪ {u
ni,j

i | i ∈ I} and

vj+1 = (vj ∩ {b | b 6= ai for any i with ni,j > 0}) ∪ {u
n′

i,j

i | i ∈ I}. The relation

uj+1 ⊆ vj+1 follows immediately. It remains to prove that it cannot happen that
bx ∈ uj+1, bx+y ∈ vj+1, y > 0, bx+y 6⊆ uj+1 and x < m for any b ∈ Σ. If,
by contradiction, this happens for some b, then there is a rule ri = ai → ui|pi

with b ∈ ui such that n′
i,j > ni,j and ni,j < x + y. We infer that a

n′

i,j

i ∈ vj and

a
ni,j

i ∈ uj. Since we know that for all c it holds that ck ∈ uj and ck+h ∈ vj with
h > 0 imply k ≥ m, we infer that ni,j ≥ m. Having ni,j ≥ m and x < m is a
contradiction, since x ≥ ni,j .

Let us prove now that PsPa(ncoo, det, pro) ⊇ L3. Actually, we prove that
each multiset in L3 is accepted by an acceptor P system in P (ncoo, det, pro) that
always terminates and that consumes neither objects in Σ nor the acceptance
symbol T .
The multiset {an | n ≥ k} is accepted by a P system with a control object b,
initial multiset b and a rule b → T |ak .
The multiset {an | n < k} is accepted by a P system with control objects b, 1, 2,
initial multiset b1 and rules b → λ|ak , 1 → 2 and 2 → T |b.
Finally, assume two multiset languages L1 and L2 in L3 and let Π1 and Π2 be
the P systems accepting them. Assume that the set of control objects in Π1 and
Π2 are disjoint. Let Π ′

1 and Π ′
2 be the P systems obtained from Π1 and Π2 by

replacing T with T1 and T with T2, respectively. The language L1 ∩ L2 is built
by joining all control objects and rules in Π ′

1 with all control objects and rules in
Π ′

2 and by adding the rule T1 → T |T2
. The language L1 ∪ L2 is built by joining

all objects and rules in Π ′
1 with all objects and rules in Π ′

2 and by adding the
rules T1 → T and T2 → T . ⊓⊔

Let us prove now the universality of the class PsPa(coo, det, npro). In this
case the corresponding class PsPg(coo, det, npro) is less expressive, therefore
looking for an encoding of PsPg(coo, det, npro) into PsPa(coo, det, npro) as done
in Thms. 2, 3, 4 is useless. We directly simulate 3-register machines, for which
universality has been proven without the need of any complicated representation
of data and instructions (as it happens with 2-register machines).

Theorem 7. PsPa(coo, det, npro) = PsRE.

Proof. We provide a map assigning to a 3-register machine M an equivalent
acceptor P system ΠM in P (coo, det, npro). Let R1, R2 and R3 be the three
registers of M , and 0 ≤ i ≤ m be the labels of its instructions. A state of M

is a triple (i, A, B, C), with 0 ≤ i ≤ m and A, B, C ∈ IN, the initial state is
(1, A′, B′, C′) for some A′, B′, C′ ∈ IN, and the pair (A′, B′, C′) is accepted if M

starting from (1, A′, B′, C′) reaches (0, 0, 0, 0). The idea is that ΠM uses objects
i with 0 ≤ i ≤ n, a, b and c, and represents a configuration (i, A, B, C) with
multiset (iaAbBcC).

Instruction i : R1+, j is simulated by rule i → aj.
Instruction i : R1−, j, k is simulated by rules

i → xiyi axi → x′
i yi → y′

i y′
ix

′
i → j y′

ixi → k .

Instructions over R2 and R3 are analogous, we simply replace any occurrence
of a with b or c, respectively.

Finally, we need these rules:

0 → T Ta → λ Tb → λ Tc → λ .

⊓⊔

All results over deterministic acceptors proved so far can be summarized in
the following corollary.

Corollary 3. PsPa(ncoo, det, npro) ⊂ PsPa(ncoo, det, pro) ⊂ PsPa(coo, det, npro) =

PsPa(coo, det, pro).

Proof. Directly from Thm. 5, Thm. 6 and Thm. 7 ⊓⊔

Moreover, we have that each class of deterministic generators is strictly in-
cluded in the corresponding class of acceptors.

Corollary 4. It holds that:

– PsPg(ncoo, det, npro) ⊂ PsPa(ncoo, det, npro);
– PsPg(ncoo, det, pro) ⊂ PsPa(ncoo, det, pro);
– PsPg(coo, det, npro) ⊂ PsPa(coo, det, npro);
– PsPg(coo, det, pro) ⊂ PsPa(coo, det, pro).

Proof. Directly from Thm. 5, Prop. 1, Cor. 3 and L2 ⊂ L1.

Finally, we provide an encoding of deterministic acceptors with cooperative
rules and promoters into the subclass without promoters.

Theorem 8. PsPa(coo, det, pro) ⇔ PsPa(coo, det, npro).

Proof. The encoding PsPa(coo, det, npro) ⇒ PsPa(coo, det, pro) is obvious. As
regards the other direction, given any acceptor Π ∈ P (coo, det, pro), we derive
an equivalent acceptor Π̂ ∈ P (coo, det, npro). By Thm. 1 we can assume that
Π is flat. Let Π = (Σ ∪C, ∅, w, R). Assume that R = {r1, . . . , rk} and Σ ∪C =
{a1, . . . , an}. Also Π̂ will be flat, of the form Π̂ = (Σ̂ ∪ Ĉ, ∅, ŵ, R̂), with Σ̂ = Σ,
Ĉ ⊃ C and ŵ ⊇ w.

The starting idea is that for any rule ri ≡ ui → vi|pi
in R we have a rule r′i

without promoters in R̂ of the form r′i ≡ uipi → vipi, so that performing a step
S by Π with ni occurrences of ri in parallel for each 1 ≤ i ≤ k is simulated by
performing ni occurrences of r′i in sequence, for each 1 ≤ i ≤ k.

Rules ri as above do not work, for three reasons. The first point is that if
ui ∩ pi 6= ∅ then ri is triggered by (ui ∪ pi) \ (ui ∩ pi), whereas r′i requires the
whole multiset ui ∪ pi. This can be repaired by rewriting all ri as ui → vi|pi\ui

,

without modifying the behavior of Π , before deriving Π̂ from Π . The second
point is that by moving promoters to left hand sides of rules we may introduce
nondeterminism. (For example, by trasforming rules a → d|c and b → e|c into
ac → dc and bc → ec.) This can be repaired by rewriting r′i as iuipi → vipi,

where 1 ≤ i ≤ k are new control objects in Ĉ that must be introduced in

sequence. The third point is that if vi ∩ ui 6= ∅ then performing r′i may trigger
r′i itself, which should be prevented when we are simulating a single evolution
step S by Π . This can be repaired by rewriting r′i as iu′

ipi → v′′i pi, provided that

new control objects a′, a′′ are introduced in Ĉ for each a ∈ Σ ∪C, objects a are
rewritten into a′ before the sequence of steps by Π̂ simulating S and objects a′′

are rewritten into a after the same sequence.
The initial multiset ŵ contains two fresh control objects s, s′ ∈ Ĉ. Acceptor

Π̂ may start by performing the following rules:

ss′ → 1s′1̂1 Ra = {a → a′ | a ∈ Σ ∪ C}

so that the object 1 triggering r′1 is introduced and all objects in Σ ∪ C are
primed. Also s′, 1̂ and 1 are new control objects in Ĉ, whose role will be clarified
later.

Then, for each 1 ≤ i ≤ k, Ĉ contains also objects i′, i′′, i′′′, i′′′, and r′i is
adjusted once more as

r′i ≡ i′u′
ip

′
i → v′′i p′ii

′′′

For each 1 ≤ i < k the following set of rules are added to R̂

Ri = {i → i′i′′, i′′ → i′′′′, i′′′i′′′′ → i, i′i′′′′ → i + 1}

so that i is rewritten into i + 1 as soon as r′i remains without u′
ip

′
i. Moreover,

the following rules are added to R̂

Rk = {k → k′k′′, k′′ → k′′′′, k′′′k′′′′ → k, k′k′′′′ → v1}

where the role of the control object v1 ∈ Ĉ will be explained later.
Notice that a step S by Π consisting of ni occurrences of ri for each 1 ≤ i ≤ n

is simulated by performing n1 occurrences of r′1 in sequence, then n2 occurences
of r′2 in sequence and so on. This is correct only if Π is deterministic, as in our
case. In fact, when Π is nondeterministic, our strategy solves the nondeterminism
and, therefore, does not simulate some valid behaviors by Π .

It remains to map any a′ that has not been consumed by r′1, . . . , r
′
k and any

a′′ that has been introduced by r′1, . . . , r
′
k to a. To this purpose, first of all we

add to Ĉ new control objects v1, . . . , vn and t1, . . . , tn, respectively.
Then, for each 1 ≤ j ≤ n, R̂ contains the following set of evolution rules

Rj = {vj → v′jv
′′
j , v′ja

′
j → v′′′j aj , v

′′
j → v′′′′j , v′′′j v′′′′j → vj , v

′
jv

′′′′
j → tj}

mapping all a′
js to aj , where also v′j , v

′′
j , v′′′j , v′′′′j are new objects in Ĉ. When

this task has been completed, tj is introduced. Moreover, for all 1 ≤ j < n, R̂

contains the following set of evolution rules

Rj
∗ = {tj → t′jt

′′
j , t′ja

′′
j → t′′′j aj , t

′′
j → t′′′′j , t′′′j t′′′′j → tj , t

′
jt

′′′′
j → vj+1}

mapping all a′′
j s to aj , where also t′j , t

′′
j , t′′′j , t′′′′j are new objects in Ĉ. Finally, R̂

contains also the following set of evolution rules

Rn
∗ = {tn → t′nt′′n, t′na′′

n → t′′′n an, t′′n → t′′′′n , t′′′n t′′′′n → tn, t′nt′′′′n → t}

mapping all a′′
ns to an. When this task has been completed, object t ∈ Ĉ is

introduced, which is exploited to trigger the rule

t → s

so that s and s′ can reintroduce 1 once more and the subsequent step by Π can
be simulated. It remains to solve a point: When no rule r′1, . . . , r

′
k is triggered,

Π̂ does not terminate but enters an infinite loop. Notice that this happens when
object v1 is introduced in 3k steps after object 1. So, let us rewrite the rule
k′k′′′′ → v1 introducing v1 as k′k′′′′ → v1zz′, where z, z′ are new control objects
in Ĉ, and let us add to R̂ the following set of rules R′:

{̂i → î + 1 | 1 ≤ i < 3k} {i → i + 1 | 1 ≤ i ≤ 3k}

z3̂ks′ → λ 3k + 13̂k → λ z′ → z′′ zz′′ → λ

so that when 3̂k and z appear at the same step then s′ is removed and the

infinite loop is prevented. Objects i are needed since 3k + 1 removes 3̂k when 3̂k

appears before z. ⊓⊔

4 Conclusions

The paper has studied relationships among classes of multiset languages accepted
and generated by P systems. In particular, the role of determinism, presence of
promoters and cooperative rules have been considered.

In the nondeterministic case, when either promoters or cooperative rules are
allowed, acceptor P systems have shown to be universal. The same is known to
hold for the corresponding classes of nondeterministic generator P systems.

In the deterministic case, acceptor P systems have been shown to be universal
only if cooperative rules are allowed. Universality has been shown not to hold
for the corresponding classes of generator P systems.

All the considered classes of languages have been characterized, and results
of strict inclusion among some of them have been proved. Moreover, in some
cases, we have been able to construct mappings taking P systems working in
generating mode into the corresponding P systems working in accepting mode.

References

1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form
Preserving Step-by-step Behaviour. Fundamenta Informaticae 87, 1-34 (2008)

2. Bianco, L., Manca, V.: Encoding–Decoding Transitional Systems for Classes of
P Systems. In: Workshop on Membrane Computing (WMC 2005). LNCS, vol.
3850, pp. 134-143, Springer (2006)

3. Bottoni, P., Martin-Vı́de, C., Pǎun, G., Rozenberg, G.: Membrane Systems with
Promoters/Inhibitors. Acta Informatica 38, 695-720 (2002)

4. Csuhaj-Varjú, E.: P Automata. In: Workshop on Membrane Computing 2004.
LNCS, vol. 3365, pp. 19-35, Springer (2005)

5. Fernau, H.: Graph-controlled Grammars as Language Acceptors. Journal of Au-
tomata, Languages and Combinatorics 2, 79-91 (1997)

6. Fernau, H., Holzer, M.: Accepting Multi-Agent Systems II. Acta Cybernetica 12,
361-380 (1996)

7. Fernau, H., Holzer, M., Bordihn, H.: Accepting Multi-Agent Systems. Computers
and Artificial Intelligence 15, 123-139 (1996)

8. Freund, R and Oswald, M: A short note on analysing P systems. Bulletin of the
EATCS, 79, 2002, 231–236.

9. Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theo-
retical Computer Science 320, 89-109 (2004)

10. Pǎun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108-143 (2000)

11. Pǎun, G.: Membrane computing. An introduction. Springer-Verlag, Berlin,
(2002)

12. Porreca, A.E., Mauri, G., Zandron, C.: Complexity Classes for Membrane Sys-
tems. Theoretical Informatics and Applications 40, 141-162 (2006)

13. Qi, Z., You,J., Mao, H.: P systems and Petri nets. In: Workshop on Membrane
Computing 2003. LNCS, vol. 2933, pp. 286–303, Springer (2004)

14. Shapiro, E.Y.: The Family of Concurrent Logic Programming Languages. ACM
Comput. Surv. 21, 1989, 412–450

