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Abstract. Membrane computing is a formal framework of distributed
parallel computing. In this paper we introduce a variant of the multi-
set rewriting model where the rules of every region are defined by the
contents of interior regions, rather than being explicitly specified in the
description of the system. This idea is inspired by the von Neumann’s
concept of “program is data” and also related to the research direction
proposed by Gh. Păun about the cell nucleus.

1 Introduction

Membrane computing is a fast growing research field opened by Gh. Păun in
1998. It presents a formal framework inspired from the structure and function-
ing of the living cells. In this paper we define yet another, relatively powerful,
extension to the model, which allows the system to dynamically change the set
of rules, not limited to some finite prescribed set of candidates. There are three
motives for this extension. First, our experience shows that “practical” prob-
lems need “more” computing potential than just computational completeness.
Second, we attempt to import a very important computational ingredients into
P systems, this time from the conventional computer science. Third, this exten-
sion correlates with the biological idea that different actions are carried out by
different objects, which too can be acted upon. (This last idea was also consid-
ered in, e.g., [6] and [1], but there one represented each rule by a single objects,
therefore all rules were still prescribed, though not their multiplicities.) Let us
first explain these motives.

Most papers of the field belong to the following categories: 1) introducing
different models and variants, 2) studying the computational power of differ-
ent models depending on what ingredients are allowed and on the descriptional
complexity parameters, 3) studying the computational efficiency of solving in-
tractable problems (supercomputing potential) depending on the ingredients,



4) using membrane computing to represent and model various processes and
phenomena, including but not limited to biology, 5) other applications.

There is a surprisingly big gap between the sets of ingredients needed to fulfill
requirements in directions 2, 3, and the sets of ingredients demanded by other
applications. For instance, very weak forms of cooperation between objects are
often enough for the computational completeness, but many “practical” prob-
lems cannot be solved in a satisfactory way under the same limitations. This
leads to the following question.

1.1 What is implicitly required in most “practical” problems?

We will mention just a few of these requirements below.

– Determinism or at least confluence. Clearly, the end user wants to obtain
the answer to the specified problem in a single run of a system instead of
examining infinitely many computations. This is a strong constraint, e.g.,
catalytic P systems and P systems with minimal symport/antiport are uni-
versal, while in the deterministic case non-universality is published for the
first ones and claimed for the latter ones. Informally speaking, less compu-
tational power is needed to just compute the result than it is to also enforce
choice-free behavior of the system.

– Input/output. Most of the universality results are formulated as generating
languages or accepting sets of vectors, or in an even more restricted setup.
There is no need to deal with input in the first case, and in the latter case
the final configuration itself is irrelevant (except yes or no in case of the
efficiency research). On the other side, both input and output are critical for
most applications.

– Representation. Clearly, any kind of discrete information can be encoded
in a single integer in some consistent way. However, a much more transpar-
ent data representation is typically required; even the intermediate configu-
rations in a computation are expected to reflect a state of the object in the
problem area.

– Efficiency. Suppose numbers are represented by multiplicities of certain
objects. The number of steps needed to multiply two numbers by plain (co-
operative) multiset processing is proportional to the result. If the multi-
set processing can be controlled by promoters/inhibitors/priorities, then the
number of steps needed for multiplication is proportional to one of the ar-
guments. However, many applications would ask for a multiplication to be
performed in a constant number of steps. Similar problems appear for string
processing.

– Data structures. Membrane computing deals with multisets distributed
over a graph, while conventional computers provide random memory access
and pointer operations, allowing much more complex structures to be built.

Some of these implicit requirements originate because the user wants a solu-
tion which is at least as good as the one that can be provided by conventional
computers. We hope that the explanations of the above list have convinced the
reader that this is often a challenge.



1.2 Program is data. Cell nucleus

In this paper we try to introduce another feature into the membrane comput-
ing. This time the inspiration is not biological, but rather is from the area of
conventional computing. Suppose we want to be able to manipulate the rules
of the system during its computation. A number of papers has been written in
this direction (see, e.g., GP systems [6], rule creation [3], activators [1], inhibit-
ing/deinhibiting rules [4] and symport/antiport of rules [5]), but in most of them
the rules are predefined in the description of the system.

The most natural way to manipulate the rules is to represent them as data,
treat this data as rules, and manipulate it as usual in P systems, in the spirit of
von Neumann’s approach. In membrane systems, the data consists of multisets,
so objects should be treated as description of the rules. Informally, a rule j in a
region i can be represented by the contents of membranes jL and jR inside i.

For instance,

1 : ab→ ac
2 : a→ d
abbb

s
becomes

ab
1L

ac
1R

a
2L

d
2R

abbb
s
.

Changing the contents of regions jL and jR results in the corresponding
change of the rule j. The next section illustrates this effect in Figure 1 and gives
the formal definitions. We call such P systems polymorphic, by analogy with
polymorphic, or self-modifying computer programs.

At the same time, if a membrane system is an abstraction inspired by the
biological cell, one can view inner regions as an abstraction inspired by the cell
nucleus; their contents correspond to the genes encoding the enzymes performing
the reactions of the system. The simplicity of the proposed model is that we
consider the natural encoding, i.e., no encoding at all: the multisets describing
the rules are represented by exactly themselves. Therefore, we are addressing
a problem informally stated by Gh. Păun in Section “Where Is the Nucleus?”
of [7] by proposing a computational variant based on one simple difference: the
rules are taken from the current configuration rather than from the description
of the P system itself.

The idea of a nucleus was also considered in [9], but such a presentation
had the following drawbacks. First, one described the dynamics of the rules
in a high-level programming language (good for simulators, but otherwise too
powerful extension having the power of conventional computers directly built
into the definition). Second, this dynamics of the rules did not depend on the
actual configuration of the membrane system (no direct feedback from objects
to rules). In the model presented in this paper, the dynamics of rules is defined
by exactly the same mechanism as the standard dynamics of objects.

2 Definitions

We refer the reader to [8] for the standard preliminaries of membrane computing.
We denote the family of recursively enumerable sets of non-negative integers
by NRE.



We define a polymorphic P system as a tuple

Π = (O, T, µ, ws, w1L, w1R, · · · , wmL, wmR, ϕ, iout),

where O is a finite alphabet, µ is a tree structure consisting of 2m+1 membranes,
bijectively labeled by elements of H = {s}∪{iL, iR | 1 ≤ i ≤ m} (the skin mem-
brane is labeled by s; we also require for 1 ≤ i ≤ m that the parent membrane
of iL is the same as the parent membrane of iR), wi is a string describing the
contents of region i, 1 ≤ i ≤ m, and ϕ is a mapping from {1, · · · ,m} to the fea-
tures of the rules described below. The set T ⊆ O describes the output objects,
while iout ∈ H ∪ {0} is the output region (0 corresponds to the environment).

Notice that the rules of a P system are not explicitly given in its description.
Essentially, such a system has m rules, and these rules change as the contents of
regions other than skin changes. Initially, for 1 ≤ i ≤ m rule i : wiL → (wiR, ϕ(i))
belongs to the region defined by the parent membrane of iL and iR. If wiL is
empty, then the rule is considered disabled. For every step of the computation
each rule is defined in the same way, taking the current contents of iL and iR
instead of initial ones.

In what follows we mainly consider a single feature, i.e., target indications.
In this case, the range of ϕ is Tar = {ini | i ∈ H} ∪ {here, out}. We denote the
class of all polymorphic P systems with cooperative rules and target indications
and at most k membranes by

OPk(polym+d(coo), tar).

In the notation above, the number k is replaced by ∗ or omitted if no bound is
specified. The subscript +d means that the rules can be disabled; we write −d
instead, if wiL is never empty for 1 ≤ i ≤ m during any computation. We prefix
this notation with D if we restrict the class to the deterministic systems (for
every input if it is specified, see below).

A computation is a sequence of configurations starting in the initial configu-
ration, corresponding to the transitions induced by non-deterministic maximally
parallel application of rules; it is called halting if no rules are applicable to the
last configuration. In the latter case the multiset of objects from T in region iout

is called the result.
If we want to compute instead of generating, we extend the tuple Π by the

description of the input as follows. In the definition of the P system, we insert
the input alphabet Σ ⊂ O after O and we insert the input region iin after ϕ.
In this case, the input multiset over Σ is added to wiin before the computation
starts. If we want to accept instead of computing, we remove T and iout from
the description of the P system; the input is considered accepted if and only if
the system may halt. If we want to decide instead of computing, we construct a
system that always halts with either yes or no in the output region, such that
this answer uniquely depends on the input; the input is accepted if and only if
the answer is yes. Speaking about the time complexity is more appropriate for
deciding than for accepting.



The set of numbers or vectors generated by a P system Π is denoted by
N(Π) or Ps(Π), respectively. In the accepting case, we write Na(Π) or Psa(Π).
In the deciding case, we write Nd(Π) or Psd(Π). If the computation of Π is
deterministic for every input, then the partial function computed byΠ is denoted
by f(Π). In this way, the entire class of polymorphic P systems with cooperative
rules and target indications, allowing disabled rules, with at most k membranes,
defines a family of sets of numbers, of sets of vectors or of functions, respectively
denoted by

NOPk(polym+d(coo), tar), PsOPk(polym+d(coo), tar),
fDOPk(polym+d(coo), tar).

In a similar way it is possible to replace cooperative rules with a more restricted
set, remove target indications or add more features to the polymorphic P sys-
tems, modifying the notation accordingly. It is even possible to consider com-
pletely different rules instead of rewriting, e.g., symport/antiport rules, but we
do not address such a topic here.

We illustrate the definitions by the following example.

Example 1. A P system with a superexponential growth.

Π1 = ({a}, {a}, µ, a, a, a, a, a, a, aa, ϕ, 1), where
µ = [ [ ]

1L
[ [ ]

2L
[ [ ]

3L
[ ]

3R
]
2R

]
1R

]
s
,

ϕ(i) = here, 1 ≤ i ≤ 3.

Naturally, contents of membranes 1L, 2L, 3L is never changed because they
are elementary and no rules have the corresponding target indications, and their
initial contents is a, so the system is non-cooperative, and the rules are never
disabled. Since only one rule acts in each of the regions s, 1R, 2R, the system is
deterministic. From all above we conclude that Π1 ∈ DOP7(polym−d(ncoo)), a
quite restricted class.

This system never halts. Its interesting aspect, however, is the growth of
the number of objects in the skin. We claim that at step n the skin contains
2n(n−1)(n−2)/6 objects, so the growth function is an exponential of a polynomial.
Indeed, this is not difficult to see by starting from the elementary membranes
and going outside.

The contents of 3R is aa and it never changes. Region 2R initially contains a
and undergoes rule a→ aa every step, so its contents at step n is a2n

. Region 1R
initially contains a and undergoes rule a→ a2n

at step n, so its contents at step
n is a2n(n−1)/2

. The skin originally contains a and at step n rule a → a2n(n−1)/2

is applied, so its contents at step n is a2n(n−1)(n−2)/6
, see Figure 1 for the actual

illustration of the computation and for the proof of the result.
This growth is faster than that of any non-polymorphic P systems, which is

bounded by the exponential Icn, where I is the initial number of objects in the
system and c is the maximum ratio for all rules of the right side size and its
left side size. It is not difficult to see that the growth function of a polymorphic



a
1L

a
2L

a
3L

a2

3R

a
2R

a
1R

a
s

3 : a→ a2 in 2R
2 : a→ a in 1R
1 : a→ a in s
⇒

a
1L

a
2L

a
3L

a2

3R

a2

2R

a
1R

a
s

3 : a→ a2 in 2R
2 : a→ a2 in 1R
1 : a→ a in s
⇒

a
1L

a
2L

a
3L

a2

3R

a4

2R

a2

1R

a
s

3 : a→ a2 in 2R
2 : a→ a4 in 1R
1 : a→ a2 in s
⇒

a
1L

a
2L

a
3L

a2

3R

a8

2R

a8

1R

a2

s

3 : a→ a2 in 2R
2 : a→ a8 in 1R
1 : a→ a8 in s
⇒

a
1L

a
2L

a
3L

a2

3R

a16

2R

a64

1R

a16

s

3 : a→ a2 in 2R
2 : a→ a16 in 1R
1 : a→ a64 in s
⇒ · · ·

Fig. 1. The computation of Π1 from Example 1. If the number of objects a in regions
3R, 2R 1R, s at step n is (xn, yn, zn, tn), respectively, then (x0, y0, z0, t0) = (2, 1, 1, 1)
and (xn+1, yn+1, zn+1, tn+1) = (xn, ynxn, znyn, tnzn).
Following just this quadruple, the computation can be represented as (2, 1, 1, 1) ⇒
(2, 2, 1, 1) ⇒ (2, 4, 2, 1) ⇒ (2, 8, 8, 2) ⇒ (2, 16, 64, 16) ⇒ (2, 32, 1024, 1024) ⇒
(2, 64, 32768, 1048576)⇒ · · ·.
The exponents of the closed form formula (2, 2n, 2n(n−1)/2, 2n(n−1)(n−2)/6) can be ver-
ified as follows. n + 1 = n + 1, (n + 1)n/2 = n(n − 1)/2 + n, (n + 1)n(n − 1)/6 =
n(n− 1)(n− 2)/6 + n(n− 1)/2.



P system without target indications is bounded by Icp(n), where I and c are
defined as above and p is a polynomial whose degree equals the depth of the
membrane structure minus one.

3 Results

As long as full cooperation is allowed, the universality of polymorphic P system is
not difficult to obtain, even without the actual polymorphism (i.e. without ever
modifying rules) and without the use of target indications. The upper bound
on the number of membranes needed is one plus twice the number of rules,
because in the polymorphic P systems the rules can only be represented by pairs
of membranes. We recall that in [2] one presents a strongly universal P system
with 23 rules. Hence, the following theorem holds.

Theorem 1. NOP47(polym−d(coo)) = NRE.

Proof. The claim is fulfilled by taking the one-membrane construction from the
main result in [2] and replacing each of the 23 rules by two membranes containing
the left-hand side and the right-hand side of that rule.

In the rest of the paper we focus on the efficiency of computations performed
by polymorphic P systems, using the time complexity terms. We devote special
attention to fast generating and deciding factorials, because they best illustrate
constant-time multiplication where the factors are not known in advance and
are even changing during the computation. First, we present a non-cooperative
system generating “slightly” more than factorials, using target indications. It is
a bit more complicated than Π1 because, firstly, we need to multiply by numbers
that grow linearly, and secondly, we want the system to halt.

Example 2. A polymorphic P system from OP13(polym−d(ncoo), tar) which gen-
erates {n! · nk | n ≥ 1, k ≥ 0}.

Π2 = ({a, b, c, d}, {a}, µ, ab, a, a, a, a, a, c, b, bd, b, λ, d, a, ϕ, 1), where
µ = [ [ [ ]

2L
[ ]

2R
[ ]

3L
[ ]

3R
]
1L

[ ]
1R

[ ]
4L

[ ]
4R

[ ]
5L

[ ]
5R

[ ]
6L

[ ]
6R

]
s
,

ϕ(i) = here, 1 ≤ i ≤ 5, ϕ(6) = in1R.

The initial configuration can be graphically represented as shown below. In
fact, such a graphical representation gives a complete description of Π2 except
the output alphabet and the output region. The target indication of a rule (here
rule 6 in 1R) may be indicated by an arrow, in this case from 6R to 1R (keeping
in mind that the reactants of the rule are taken from the parent region of the
membranes describing the rule, in this case, from region 1). At the right we give
a simplified representation of the same system by replacing pairs of membranes
with constant contents by the rules written explicitly (this is just a different
representation, so-called “syntactic sugar”, and we still count such rules as pairs
of membranes). Rule 1 is not written with the rule syntax because the contents
of both 1L and 1R will change.



The essence of the functioning of Π2 is the following. Rules 4 and 6 lead to
incrementation of the number of copies of a in 1R (the number of copies of a
in the skin does not change during the first two steps). The system will apply
rule 4 for n − 1 ≥ 0 times and then rule 5 (applying rule 5 is necessary for the
system to halt). Suppose that all this time rule 2 has been applied in region
1L. Then, the number of objects in region 1R will grow linearly, and subsequent
applications of a dynamic rule 1 : a → ai, 1 ≤ i ≤ n will produce an! in the
skin. After that, the number of objects a in the skin will be multiplied by n
until rule 3 is applied, because 1 : c → an will be no longer applicable, halting
with the skin only containing objects a their number being an arbitrary number
of the form n! · nk. Now assume that rule 3 has been applied earlier, effectively
stopping the multiplication of the number of objects a in the skin before the
incrementation of objects a in 1R is finished. In that case the multiplicity of
objects a in the skin will be just a factorial of a smaller number, and the system
will evolve by application of rules 4, 6 until rule 5 is applied, without affecting the
result. Notice that the time complexity (understood as the shortest computation
producing the corresponding result) of generating n! · nk is only n+ k + 1.

To generate exactly {n! | n ≥ 1} we need to stop the multiplication when we
stop the increment. This seems impossible without cooperative rules.

Example 3. A P system from OP9(polym−d(coo), tar) generating {n! | n ≥ 1}.

Π3 = ({a, b, c, d}, {a}, µ, ab, a, a, b, bd, b, c, d, a, ϕ, 1), where
µ = [ [ [ ]

1L
[ ]

1R
[ ]

2L
[ ]

2R
[ ]

3L
[ ]

3R
[ ]

4L
[ ]

4R
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 2, ϕ(3) = in1L, ϕ(4) = in1R.

This system is very similar to Π2. There are only the following differences.
First, rules a → a and a → c are removed from region 1L. Second, instead
of erasing b in the skin, the corresponding rule sends object c to region 1L,
which stops both increment (b is erased) and multiplication (1 : ac→ an is not
applicable in the skin). Ironically, this system never applies any non-cooperative
rule, but the non-cooperative feature seems unavoidable in order to stop the
computation in the synchronized way. A compact graphical representation of
Π3 is given below.



a
1L

a
1R

2 : b→ bd, 3 : b→ (c, in1L), 4 : d→ (a, in1R)

ab
s

Now we proceed to describing a P system generating {22n | n ≥ 0} in O(n)
steps. Since the growth of polymorphic P systems without target indications is
bounded by exponential of polynomials, the system below grows faster than any
of them. Moreover, it produces the above mentioned result by halting.

It is also worth noting that even polymorphic P systems cannot grow faster
than exponential of exponential in linear time, because if a system has n+n+1 >
3 objects at some step, then it cannot have more than n2 + n+ 1 objects in the
next step. Indeed, consider that some rule r is applied for n times; let its left side
contain x objects and let its right side contain y objects. Then, x+y objects are
needed to describe the rule and they transform nx other objects into ny objects.
It is not difficult to see that the growth is maximal if x = 1 and y = n. Since
n2 + n+ 1 is less than the square of n+ n+ 1, and iterated squaring yields the
growth which is exponential of exponential, it is not possible to grow faster. The
system below grows three times slower than this bound.

Example 4. A P system from OP15(polym−d(ncoo), tar) generating numbers
from {22n | n ≥ 0} in 3n+ 2 steps.

Π4 = ({a, b, a′, b′, c}, {a}, µ, b2, a, λ, a, a, a, c, b, λ, b, a′b′, a′, a, b′, b, ϕ, 1), where

µ = [ [ [ ]
2L

[ ]
2R

[ ]
3L

[ ]
3R

]
1L

[ [ ]
4L

[ ]
4R

]
1R

7∏
i=5

(
[ ]

iL
[ ]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 6, ϕ(7) = in1R.

The desired effect is obtained by iterated squaring. By rules 5, 6, 7, in two
steps each copy of b in the skin changes into a and also sends a copy of b in region
1R. In the next step, if region 1L still contains an a, each copy of a in the skin
is replaced by the contents of region 1R, and the process continues. Therefore,
if we had bk in the skin at some step, then in two steps we will have ak in the
skin and rule 1 will be of the form a → bk, yielding bk

2
in the third step. The

iteration continues while rule 2 is being applied in region 1L. When rule 3 is
applied, the cycle stops because rule 1 : c → bk will not be applicable, and the
result is given as the multiplicity of objects a in the skin. Clearly, 2 = 220

and
22n+1

= (22n

)2, so the systems generates 2nth powers of 2. We underline that
no cooperation was used in this case. A compact graphical representation of this
system is shown below.

2 : a→ a, 3 : a→ c
a

1L

4 : b→ λ
λ

1R
5 : b→ a′b′, 6 : a′ → a, 7 : b′ → (b, in1R)

b2
s



We remind the reader that the picture above represents a system with 15
membranes because the rules notation is simply a compact way to represent
pairs of membranes. Note that one rule could have been saved if the right side
of the rule were allowed to have objects with different target indications, but
this issue does not affect the computational power, only the number of rules,
whereas the definitions are much simpler. Another rule could be saved at the
price of using a cooperative rule to stop the computation instead of rules 2 and
3, like in the previous example.

We now proceed to tasks which are more difficult than generating, namely,
deciding a set of numbers or computing a function in a deterministic way. We
illustrate the first case by modifying the previous example. We use an additional
ingredient compared to the previous systems: we rely on disabling a rule by emp-
tying the region describing its left side. Although we expect that this ingredient
does not change the computational power of the systems, we use it in order to
have smaller constructions.

Example 5. A deterministic P system from OP15(polym+d(coo), tar) computing
the function n −→ 22n

in 3n+ 2 steps.

Π5 = ({a, b, a′, b′, c, d, d′}, {d}, {a}, µ, cb2, λ, λ, a, λ, b, λ,
b, a′b′, a′, a, cd, c′d′, c′, c′′, c′′, c, d′, a, b′, b, ϕ, 1, 1), where

µ = [ [ [ [ ]
2L

[ ]
2R

]
1L

[ [ ]
3L

[ ]
3R

]
1R

10∏
i=4

(
[ ]

iL
[ ]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 8, ϕ(9) = in1L, ϕ(10) = in1R.

This system works like Π4 from the previous example. We only focus on the
differences. The previous system used non-deterministic choice between rules 2
and 3 to continue the computation or to stop it. In this case, squaring stops by
itself due to the rule 2 : a→ λ, so producing object a in region 1L activates one
squaring. The most important difference is that the number n is given as input
into the skin, by the multiplicity of objects d. Moreover, besides two copies of b
the skin initially contains an object c, responsible for counting until n by con-
suming objects d and activating the squaring routine the corresponding number
of times. The cycle takes 3 steps, see rules 6, 7, 8, 9. When object c has no more
copies of d to consume, the result is obtained as the multiplicity of objects a in
the skin. We show a compact graphical representation of Π5 below.

2 : a→ λ
λ

1L

3 : b→ λ
λ

1R
4 : b→ a′b′, 5 : a′ → a, 10 : b′ → (b, in1R)

6 : cd→ c′d′, 7 : c′ → c′′, 8 : c′′ → c, 9 : d′ → (a, in1L)
cb2

input dn

s



Note that this system uses cooperation for counting and disabling the rules
for easier control. We leave it as an exercise for the reader to construct a P system
Π ′5 computing the same function without disabling rules. Hint: as long as objects
a only appear in the skin every third step, there is no need to disable rule 1 while
the computation is in progress. Object c can deterministically subtract d and
perform its appearance checking. Finally, when there are no copies of d in the
skin, moving c into 1L will make rule 1 inapplicable without the need to disable
it by emptying its left side.

Now we give an example of a P system deciding a set of numbers. It works
deterministically and produces an object yes or no in the skin, depending on
whether the input number belongs to the specified set. We also emphasize its
time complexity.

Example 6. A deterministic P system from OP37(polym−d(coo), tar) deciding
the set {n! | n ≥ 1}. A number k ≤ n! is decided in at most 4n steps, i.e., in a
sublogarithmic time with respect to k.

Π6 = ({a, b, c0, c1, c2, A,A′, B,B′, p0, p1, p2, p3, yes, no}, {a}, {yes, no}, µ,
p0c0, a

2, b, b, a, c1, c2, c2, λ, p0, AABp1, Aa,A
′a,Bb,B′b, p1, p2,

p2B
′AA, p3d, p2B

′A′A, fno, p2B
′A′A′, fno, p2BAA, fno,

p2BA
′A, fyes, p2BA

′A′, fno, p3, p0c0, c0, c1, d, a, f, f, ϕ, 1, 1), where

µ = [ [ ]
1L

[ [ ]
3L

[ ]
3R

[ ]
4L

[ ]
4R

]
2L

[ ]
2R

18∏
i=5

(
[ ]

iL
[ ]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 15, ϕ(16) = in2L, ϕ(17) = ϕ(18) = in1L.

The work of Π6 consists of iterated division of the input ak. Each cycle
consists of 4 steps. The role of object c0 is to enter into 2L by rule 16, thus
preventing rule 2 : b → a to work during the second and the third step of the
cycle (bc1 → a is not applicable, changing by rule 3 to bc2 → a, which is also
not applicable, and then being restored by rule 4).

Object p0 marks the steps and produces the necessary objects for checking
some numbers, and finally produces symbols to increment the divisor or to mod-
ify the dividing rule to stop the computation, and give the answer, as follows.
Suppose that the input is ak. In the first step, p0 changes into p1, also producing
checkers AAB. In the same time, the number k will be divided by n (initially
n = 2) by rule 1 : an → b, changing ak into bxay, where x is the quotient and y
is the remainder.

In the second step, p1 changes into p2, waiting for the checkers. The role of
the checking rules 6 : Aa → A′a and 7 : Bb → B′b is to test the multiplicity of
the remainder and the quotient, respectively. Hence, object B will be primed if
x > 0. Notice that since there are two copies of A in the system, the number of
symbols A that will be primed is min(y, 2). Thus, there are 6 combinations of
symbols A and B, primed or not.

In the third step, we distinguish two special cases. If x > 0 and y = 0,
then the input is a multiple of the currently computed factorial, and we proceed



to the next iteration by rule 9 : p2B
′AA → p3d. If x = 0 and y = 1, then

the input is equal to the previously computed factorial, and the system gives
the positive answer by the rule 13 : p2BA

′A → fyes. Four other combinations
correspond to detecting that the input is not equal to a factorial of any number
(two cases correspond to non-zero quotient and non-zero remainder, the third
case corresponds to the input being zero, and the last case corresponds to a
multiple of some factorial which is smaller than the next factorial), so fno is
produced.

In the fourth step, rule 2 : b → a is used, so the quotient is ready to be
divided again. Object f is used to stop the computation by rule 18, since rule
1 : anf → b is not applicable. In case we proceed to the next iteration, the role of
object d is to increment the multiplicity n of objects a in region 1L, and object
p3 changes back to p0 and produces a new copy of c0 for the next cycle.

Below is a compact graphical representation of Π6.

a2

1L
b

1R

3 : c1 → c2, 4 : c2 → λ
b

2L
a

2R
5 : p0 → AABp1, 6 : Aa→ A′a, 7 : Bb→ B′b, 8 : p1 → p2

9 : p2B
′AA→ p3d, 10 : p2B

′A′A→ fno, 11 : p2B
′A′A′ → fno

12 : p2BAA→ fno, 13 : p2BA
′A→ fyes, 14 : p2BA

′A′ → fno
15 : p3 → p0c0, 16 : c0 → (c1, in2L), 17 : d→ (a, in1L), 18 : f → (f, in1L)

p0c0
input an

s

We summarize some of the results we obtained as follows.

Theorem 2. There exist

– A strongly universal P system from OP47(polym−d(coo));
– A P system Π1 ∈ DOP7(polym−d(ncoo)) with a superexponential growth;
– A P system Π2 ∈ OP13(polym−d(ncoo), tar) such that N(Π2) = {n! · nk |
n ≥ 1, k ≥ 0} and the time complexity of generating n! · nk is n+ k + 1;

– A P system Π3 ∈ OP9(polym−d(coo), tar) such that N(Π3) = {n! | n ≥ 1}
and the time complexity of generating n! is n+ 1;

– A P system Π4 ∈ OP15(polym−d(ncoo), tar) such that N(Π4) = {22n | n ≥
0} and the time complexity of generating 22n

is 3n+ 2;
– A P system Π ′5 ∈ DOP∗(polym−d(coo), tar) such that f(Π5) = (n −→ 22n

)
and the time complexity of computing n −→ 22n

is O(n);
– A P system Π6 ∈ DOP∗(polym−d(coo), tar) such that Nd(Π6) = {n! | n ≥

1} and the complexity of deciding any number k, k ≤ n! does not exceed 4n.

Moreover, polymorphic P systems can grow faster than any non-polymorphic P
systems, whereas even non-cooperative polymorphic P systems with targets can
grow faster than any polymorphic P systems without targets.



4 Discussion

We proposed a variant of the rewriting model of P systems where the rules are
represented by objects of the system itself and thus can dynamically change. This
yields a mechanism whose idea is similar to the idea of the functioning of the
cell nucleus (i.e., DNA represent the proteins performing certain functions on the
objects including DNA), except our formalism is more elegant mathematically
because of its simplicity and because we only used a trivial encoding (which is no
encoding at all, except the left and right parts of the rule are given in dedicated
membranes).

This variant also has a number of connections to the conventional computing,
since the “program” can be changed by manipulating data (cf. von Neumann ar-
chitecture vs Harvard architecture). A number of possible extensions is suggested
in the Definition section of the paper.

Polymorphic P systems are universal (with 47 membranes) because non-
polymorphic P systems are universal. While the growth of non-polymorphic
P systems is bounded by exponential, polymorphic P systems without target
indications can grow faster, bounded by an exponential of polynomials, and
polymorphic P systems with target indications can grow even faster, bounded
by an exponential of exponentials.

Non-cooperative polymorphic P systems can generate non-context-free sets of
numbers. Cooperative polymorphic P systems can multiply numbers in constant
time and generate factorials of n or exponentials of exponentials of n in time
O(n), which is a very important advantage over non-polymorphic P systems.

An especially interesting case is that of deciding if the input belongs to a
given set, e.g., {n! | n ≥ 1}. While non-polymorphic P systems cannot even
grow with factorial speed, not to speak about halting or verifying the input,
we have shown that polymorphic P systems can decide factorials in time O(n).
This implies that there exist infinite sets of numbers that are accepted in a time
which is sublinear with respect to the size of the input in binary representation
(without cheating by only examining a part of the input to accept).

Many questions are left open, we mention three questions here. First, we
find it particularly interesting what is the exact characterization of the most
restricted classes we defined, like OP∗(polym−d(ncoo)). On the other hand, it
seems interesting how the (general classes of) polymorphic P systems can solve
the problems of real applications which non-polymorphic P system are not suit-
able for. Another question is whether the polymorphic P systems can effectively
use superexponential growth and dynamics of rule description to solve intractable
problems in polynomial time without dividing or creating membranes. Conjec-
ture: no, because the total number of rules (counting rules in different regions
as different) cannot grow.
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