Chemischer Oszillator Simulation eines Lotka-Volterra Models

B. Seelbinder

Institut für Mathematik und Informatik Universität Jena

21. Juni 2016

B. Seelbinder chem. Osz.

Das Modell - Räuber-Beute

Stoffe

- X: Kaninchen [Konzentration]
- Y: Füchse [Konzentration]
- A: Futter für Kaninchen [Konstant]
- B: verstorbene Füchse [Konzentration]

Reaktionen

- $r_1: A+X \longrightarrow 2X$ (Vermehrung der Kaninchen)
- $r_2: X+Y \longrightarrow 2Y$ (Vermehrung der Füchse durch Kaninchen)
- $r_3 : Y \longrightarrow B$ (Sterben der Füchse)

Das Modell - Räuber-Beute

Stoffe

- X: Kaninchen [Konzentration]
- Y: Füchse [Konzentration]
- A: Futter für Kaninchen [Konstant]
- B: verstorbene Füchse [Konzentration]

Reaktionen

- $r_1: A+X \longrightarrow 2X$ (Vermehrung der Kaninchen)
- $r_2: X+Y \longrightarrow 2Y$ (Vermehrung der Füchse durch Kaninchen)
- $r_3: Y \longrightarrow B$ (Sterben der Füchse)

Dynamik des Modells (1)

stiometrische Matrizen

Massen-Wirkungskinetik

$$\frac{d\dot{x}}{dt} = N \cdot v(\underline{x}) \qquad v_r(\underline{x}) = \mathbf{k}_r \cdot \prod_{i=1}^n x_i^{L_{r,i}} \qquad \underline{x} = (A, B, X, Y)$$

B. Seelbinder

chem. Osz.

Dynamik des Modells

Differenzialgleichungen

Ratenkonstanten

- k_1A Zugabe von X (Kaninchen)
 - k₂ X Verbrauch durch Y & Y Zunahme durch X
 - k₃ Verbrauch von Y (Füchse)

Stabilität - Isoklinen

$\mathring{Y} = 0$, S-Isoklinen

1
$$Y = 0$$

2 $X = \frac{k_3}{k_2}, \quad k_2 \neq 0$

$$\dot{X} = 0$$
, W-Isoklinen
 $X = 0$

$$Y = \frac{k_1 A}{k_2}, \quad k_2 \neq 0$$

э

Image: Image:

Vektorfelder (1)

Abbildung: Vektorfelder im Zustandsraum von X und Y

Vektorfelder (2)

Abbildung: vermutlicher Grenzzyklus von X und Y

Gliederung

Fixpunkt - Steady State

•
$$X = 2, Y = 2, k_1 = 4, k_2 = 1, k_3 = 2, A = 0.5$$

 $\Rightarrow X = 0 \land Y = 0$

Abbildung: steady-state

A B > A B > A

Weg zum Grenzzyklus - »Auslenken«

- Reaktanten fixiern, Ratenkonstanten verändern
 ⇒Fixpunkt-Position ändert sich, aber kein steady state
- ❷ Reaktanten ändern, Ratenkonstanten fixiern ⇒Fixpunkt gleich, aber kein steady state
- Seide ändern ⇒kann Fixpunkt ändern oder erhalten, kann aber ebenfalls wieder in steady state führen

Ein »fast« perfekter Grenzzyklus

Abbildung: $k_2 = 1.9$, Grenzzyklus

Grenzzyklus - Zustandsraum

Abbildung: Grenzzyklus im Zustandsraum von X und Y

Exploration: k_2

Abbildung: k2 mit 1.9 und 0.001

Э

Exploration: k_3 und k_1

Abbildung: k_1 mit 3.9 und k_3 mit 1.9

< 一型

Oszillationszeit - Do da math

Abbildung: Oszillationszeit in Abhängigkeit von k_1 und k_2

э

Oszillationszeit - Do da math (2)

Abbildung: Oszillationszeit in Abhängigkeit von k_1 und k_2

Image: A matrix and a matrix

Grenzzyklen der Ratenkonstanten

Abbildung: Grenzzyklen von k_1, k_2, k_3 und X

Veränderung der Wellenform

Veränderung der Wellenform

B. Seelbinder chem. Osz.

Veränderung der Wellenform

A B > A B > A

Das Ende (der Numerik)

