Chemical Oscillation Frequency Control using Phase-locked Loops

A prototype of biological clocks and their entrainment by light?

Thomas Hinze Christian Bodenstein

Benedict Schau Ines Heiland Stefan Schuster

Friedrich Schiller University Jena Department of Bioinformatics at School of Biology and Pharmacy Modelling Oscillatory Information Processing Group

{thomas.hinze, christian.bodenstein}@uni-jena.de

Chemical Oscillation Frequency Control using Phase-locked Loops

Systems Biology at Friedrich Schiller University Jena

Chemical Oscillation Frequency Control using Phase-locked Loops

Human Daily Rhythm: Trigger and Control System

Chemical Oscillation Frequency Control using Phase-locked Loops

Chronobiology

science of biological rhythms and clock systems

Chemical Oscillation Frequency Control using Phase-locked Loops

Motivation

Motivation
000Reaction Kinetics
0000Processing Units
00000Phase-locked Loop
00000Theory behind PLLs
0000000000000Simulation Studies
00000Prospectives
00000

Circadian Clock

- Undamped biochemical oscillation
- Free-running period close to but typically not exactly 24 hours persisting under constant environmental conditions (e.g. permanent darkness DD or permanent light LL)
- Entrainment adaptation to external stimuli (e.g. light-dark cycles induced by sunlight)
- Temperature compensation within a physiological range
- Reaction systems with at least one feedback loop

 \Longrightarrow Biological counterpart of frequency control syster

Chemical Oscillation Frequency Control using Phase-locked Loops

Circadian Clock

- Undamped biochemical oscillation
- Free-running period close to but typically not exactly 24 hours persisting under constant environmental conditions (e.g. permanent darkness DD or permanent light LL)
- Entrainment adaptation to external stimuli (e.g. light-dark cycles induced by sunlight)
- Temperature compensation within a physiological range
- Reaction systems with at least one feedback loop

⇒ Biological counterpart of frequency control system

Chemical Oscillation Frequency Control using Phase-locked Loops

1. Reaction Kinetics at a Glance

- Mass-action Kinetics: Background
- Ordinary Differential Equations
- Mass-action vs. Saturation Kinetics
- 2. Processing Units: Components of Chemical Control Loops
 - 3. Phase-locked Loop (PLL): Continuous Frequency Control
 - 4. Theoretical Background of PLLs
 - 5. Simulation Studies for Circadian Clock Systems
 - 6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

ation Reaction Kinetics

ics Processing Unit

ts Phase-locked

Simulation Studies Pros

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

$$A + B \stackrel{\hat{k}}{\longrightarrow} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C: $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [E$

Consumption rate of C: $v_{cons}([C]) = C$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$

Chemical Oscillation Frequency Control using Phase-locked Loops

tion Reaction Kinetics

occossing Unit

ts Phase-locked

p Theory behind PLLs S

PLLs Simulation Studies

Prospectives

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

 $A + B \xrightarrow{\hat{k}} C \quad \dots \quad Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$ $Z_C \sim [A] \cdot [B]$

Production rate generating C: $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$

Consumption rate of C: $\dots v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditional [C](0) [A](0)

Chemical Oscillation Frequency Control using Phase-locked Loops

ion Reaction Kinetics

occessing Unit

ts Phase-locked

Ls Simulation Studies P o ooooo c

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \end{aligned}$

Initial conditions: [*C*](0), [*A*](0), [*B*](0)

ion Reaction Kinetics

ics Processing Unit

ts Phase-locked

p Theory behind PLLs S

PLLs Simulation Studies

Prospectives

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \\ \end{aligned}$ Initial conditions: [C](0), [A](0), [B](0)

Chemical Oscillation Frequency Control using Phase-locked Loops

tion Reaction Kinetics

tics Processing Unit

00000

Simulation Studies Prospe

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \\ \end{aligned}$ Initial conditions: [C](0), [A](0), [B](0)

Chemical Oscillation Frequency Control using Phase-locked Loops

tion Reaction Kinetics

ics Processing Unit

ts Phase-locked

to be set

Ls Simulation Studies Pi

Mass-action Kinetics: Background

Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions *Z* proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \dots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \\ \end{aligned}$ Initial conditions: [C](0), [A](0), [B](0)

Chemical Oscillation Frequency Control using Phase-locked Loops

Mass-action Kinetics: General ODE Model Chemical reaction system

^

results in ordinary differential equations

$$\frac{d\left[S_{i}\right]}{dt} = \sum_{\nu=1}^{h} \left(\hat{k}_{\nu} \cdot (b_{i,\nu} - a_{i,\nu}) \cdot \prod_{l=1}^{n} [S_{l}]^{a_{l,\nu}}\right) \quad \text{with} \quad i = 1, \dots, n.$$

Chemical Oscillation Frequency Control using Phase-locked Loops

Reaction Kinetics Processing Units

0000

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Prospectives

Mass-action vs. Saturation Kinetics

- Michaelis Menten: Typical enzyme kinetics
- Higher-order Hill (n ≥ 2): Typically for gene expression using sigmoidal transfer function

Chemical Oscillation Frequency Control using Phase-locked Loops

- 1. Reaction Kinetics at a Glance
- 2. Processing Units: Components of Chemical Control Loops
 - Addition
 - Multiplication
 - Low-pass Filter
 - Controllable Goodwin-type Core Oscillator
- 3. Phase-locked Loop (PLL): Continuous Frequency Control
- 4. Simulation Studies for Circadian Clock Systems
- 5. Theoretical Background of PLLs
- 6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Processing Units 0000000

Addition

$$\begin{array}{rcl} [X_1] &=& 0\\ [\dot{X}_2] &=& 0\\ [\dot{Y}] &=& k_1[X_1] + k_2[X_2] - k_3[Y] \end{array}$$

ODE solution for asymptotic steady state in case of $k_1 = k_2 = k_3$: $[Y](\infty) = \lim_{t \to \infty} \left(1 - e^{-k_1 t}\right) \cdot \left([X_1](t) + [X_2](t)\right) = [X_1](0) + [X_2](0)$

Transfer function: $[Y] = [X_1] + [X_2]$

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster, Chemical Analog Computers for Clock Frequency Control Based on P Modules, Proceedings of the Twelfth International Conference on Membrane Computing. to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Processing Units 0000000

Prospectives

Multiplication

ODE solution for asymptotic steady state in case of $k_1 = k_2$: $[Y](\infty) = \lim_{t \to \infty} (1 - e^{-k_1 t}) \cdot ([X_1](t) \cdot [X_2](t)) = [X_1](0) \cdot [X_2](0)$

Transfer function: $[Y] = [X_1] \cdot [X_2]$

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules, Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Low-pass Filter

Processing Units

00000000

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Low-pass Filter: Bode Plot as Characteristic Curve

Magnitude $dB = 10 \cdot lg \left(\frac{amplitude of output signal}{amplitude of input signal}\right)$

- Signals affected by smoothing delay throughout cascade
- Oscillation waveform harmonisation into sinusoidal shape
- Global filter parameters: passband damping, cutoff frequency, slope

Chemical Oscillation Frequency Control using Phase-locked Loops

Controllable Goodwin-type Core Oscillator

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Theory behind PLLs 3

Simulation Studies Prospectives

Core Oscillator: Dynamical Behaviour

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit Nachlaufsynchronisation. Diploma thesis, 2011

Chemical Oscillation Frequency Control using Phase-locked Loops

Motivation
0000Reaction Kinetics
0000Processing Units
00000Phase-locked Loop
00000Theory behind PLLs
0000000000000Simulation Studies
00000Prospectives
0000

Core Oscillator: Dynamical Behaviour

- Velocity parameter k₆ of Z degradation notably influences oscillation frequency
- Period control coefficients assigned to each reaction quantify influence on frequency

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

tion Reaction Kine

cs Processing Units

Phase-locked Loop

Theory behind PLLs Simulation Studie

es Prospectives

- 1. Reaction Kinetics at a Glance
- 2. Processing Units: Components of Chemical Control Loops
- 3. Phase-locked Loop (PLL): Continuous Frequency Control
 - General Scheme of a Simple Control Loop
 - Scheme of a Phase-locked Loop
 - Model of a Chemical Frequency Control Based on PLL
- 4. Theoretical Background of PLLs
- 5. Simulation Studies for Circadian Clock Systems
- 6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

General Scheme of a Simple Control Loop

Chemical Oscillation Frequency Control using Phase-locked Loops

Scheme of a Phase-locked Loop

Chemical Oscillation Frequency Control using Phase-locked Loops

Scheme of a Phase-locked Loop

Chemical Oscillation Frequency Control using Phase-locked Loops

Model of a Chemical Frequency Control Based on PLL

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

- 1. Reaction Kinetics at a Glance
- 2. Processing Units: Components of Chemical Control Loops
- Phase-locked Loop (PLL): Continuous Frequency Control
- 4. Theoretical Background of PLLs
 - Comparing Phases
 - Extracting Phase-difference Information
 - Phase Response Curve
 - Amplitude and Phase: Arnold Tongue
- 5. Simulation Studies for Circadian Clock Systems
- 6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Comparing Phases

Theory behind PLLs

Output of core oscillator $\omega = 2\pi/\tau$:

$$\mathbf{y}(t) = \mathbf{y}(t+\tau) = \mathbf{A}_0 + \sum_{n=1}^{\infty} \mathbf{A}_n \cos(n\omega t + \varphi_n)$$

Input of external reference signal $\omega' = 2\pi/\tau'$:

$$z(t) = z(t + \tau') = A'_0 + \sum_{n=1}^{\infty} A'_n \sin(n\omega' t + \varphi'_n)$$

For simplicity we assume that all higher harmonics are removed by a filter.

Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Comparing Phases: Multiplication

Multiplication module:

$$\dot{x} = k(z(t)y(t) - x)$$
 $\lim_{k \to \infty} x(t) = z(t)y(t)$

Output of multiplication:

$$z(t)y(t) = A'_0A_0 + A'_0A_1\cos(\omega t + \varphi_1) + A_0A'_1\sin(\omega' t + \varphi'_1) + \frac{A'_1A_1}{2}\left(\sin((\omega' - \omega)t + \varphi'_1 - \varphi_1) + \sin((\omega' + \omega)t + \varphi'_1 + \varphi_1)\right)$$

Low frequency term ($\omega' \approx \omega$) carries the phase-difference information: $\phi' - \phi$.

Chemical Oscillation Frequency Control using Phase-locked Loops

Extract Phase-difference Information: Filtering

Filter out high-frequency terms from x(t). Simple linear signalling cascade works as a low-pass filter¹:

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit Nachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.

¹Samoilov et al. J Phys Chem 106 (2002)

Chemical Oscillation Frequency Control using Phase-locked Loops

Error Signal and Feedback

Output of cascade:

$$m{e}(t) = m{a}_0 + m{a}_1 \sin((\omega' - \omega)t + arphi_1' - arphi_1 + arphi_{lpf})$$

Weakly (!) feed back the signal to the oscillator, e.g. by changing the kinetic rate constant of *I*-th reaction:

$$k_{l}^{*} = k_{l}(1 + \varepsilon e(t)) = k_{l} + k_{l}\varepsilon a_{0} + k_{l}\varepsilon a_{1}\sin(\dots)$$

= $\tilde{k}_{l}(1 + \tilde{\varepsilon}\sin(\dots)).$

 \tilde{k}_{l} reaction rate at constant external signal A'_{0} . Drop tilde for convenience.

Chemical Oscillation Frequency Control using Phase-locked Loops

Perturbed Core Oscillator

Theory behind PLLs

Unperturbed core oscillator at constant external signal A'_0 :

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{F}(\mathbf{X})$$

with limit cycle solution $\mathbf{X}^{0}(t) = \mathbf{X}^{0}(t + \tau)$. Perturbed core oscillator:

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{F}(\mathbf{X}) + \varepsilon \sin\left(\dots\right) k_{\mathrm{l}} \frac{\partial \mathbf{F}}{\partial k_{\mathrm{l}}}(\mathbf{X}).$$

Since ε is small the amplitude of the limit cycle is not affected and we can reduce the model to the phase dynamics!

Prospectives

ion Reaction Kinetic

occessing Ur

Phase-locked Loc 00000 Theory behind PLLs

Simulation Studies Prospection

Amplitude and Phase

Granada & Herzel PLoS ONE 4(9): e7057 (2009)

We can assign each point on the limit cycle \mathbf{X}^0 a specific phase value ϕ .

Chemical Oscillation Frequency Control using Phase-locked Loops

Phase Reduction (Kuramoto 1984)

Demir et al. IEEE Transactions on circuits and systems 47:5 (2000) 655-674

Oscillator phase dynamics:

$$rac{\mathrm{d}\phi}{\mathrm{d}t} = \omega + arepsilon \, \mathsf{PRC}_{\mathit{l}}(\phi) \sin\left(\phi' - \phi + arphi_{\mathit{lpf}}
ight).$$

PRC₁ is the 2π -periodic phase response curve of k_1 .

Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Phase Response Curve

Theory behind PLLs

00000000000000

Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Phase Difference

Phase difference ψ between oscillator and external signal:

$$\begin{split} \psi &= \phi - \phi' \\ \frac{\mathrm{d}\psi}{\mathrm{d}t} &= \omega - \omega' - \varepsilon \, \mathsf{PRC}_{\mathsf{I}}(\phi' + \psi) \sin\left(\psi - \varphi_{\mathsf{Ipf}}\right) \end{split}$$

 ψ is a slowly changing variable compared to $\phi' = \omega' t$, therefore we may average the perturbation over one external cycle and consider ψ on the slow time scale:

$$\frac{1}{\tau'}\int_0^{\tau'}\mathsf{PRC}_l(\phi'(t)+\psi)\,\mathrm{d}t=-C_l^\tau,$$

where $C_{l}^{\tau} = k_{l} / \tau \frac{\partial \tau}{\partial k_{l}}$ is the period control coefficient.

Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Theory behind PLLs Simulation Studies

Phase Difference

Phase difference equation:

$$rac{\mathrm{d}\psi}{\mathrm{d}t} = rac{\omega-\omega'}{arepsilon} + oldsymbol{C}_{\mathrm{l}}^{ au} \sinig(\psi-arphi_{oldsymbol{l}
ho f}ig)$$

Phase-locking corresponds to (stable) steady-state solutions ψ_0 of this equation:

$$\phi(t) = \phi'(t) + \psi_0.$$

Phase locking exists in a region enclosed by:

$$\varepsilon^{\pm} = \mp \left(\omega - \omega'\right) \frac{1}{C_{\mathrm{l}}^{\tau}},$$

the so called Arnold tongue.

Chemical Oscillation Frequency Control using Phase-locked Loops

Arnold Tongue

Chemical Oscillation Frequency Control using Phase-locked Loops

Phase Lag

The phase lag can be easily determined from the derived equation. For example consider $\omega = \omega'$ and $C_l^{\tau} < 0$, the stable solution then is:

$$\psi_0 = \varphi_{lpf}.$$

That means the phase lag is completely determined by the low-pass filter.

Chemical Oscillation Frequency Control using Phase-locked Loops

- 1. Reaction Kinetics at a Glance
- 2. Processing Units: Components of Chemical Control Loops
- 3. Phase-locked Loop (PLL): Continuous Frequency Control
- 4. Theoretical Background of PLLs
- 5. Simulation Studies for Circadian Clock Systems
 - Period Lengths subject to Constant Ext. Stimulus
 - Time to Entrainment to Different Period Lengths
 - Time to Entrainment to Different Initial Phase Shift
 - Best Case and Worst Case Entrainment
- 6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops

Period Lengths subject to Constant External Stimulus

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing. to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Time to Entrainment to Different Period Lengths

Natural period of core oscillator: 24.2h

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Time to Entrainment to Different Initial Phase Shifts

Entrainment reached within convergence interval 1min

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

Best Case and Worst Case Entrainment

Entrainment reached within convergence interval 1min

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing, to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops

- 1. Reaction Kinetics at a Glance
- 2. Processing Units: Components of Chemical Control Loops
- 3. Phase-locked Loop (PLL): Continuous Frequency Control
- 4. Theoretical Background of PLLs
- 5. Simulation Studies for Circadian Clock Systems
- 6. Prospectives
 - Conclusions and Open Questions
 - Acknowledgements

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops

MotivationReaction KineticsProcessing UnitsPhase-locked LoopTheory behind PLLsSimulation StudiesProspectives000

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

FORSYS Partner Initiative

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

FORSYS Partner Initiative

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of *in-vivo* counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

FORSYS Partner Initiative

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

FORSYS Partner Initiative

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

FORSYS Partner Initiative

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops

Conclusions

- Chemical frequency control can utilise PLL
- Prototypic modelling example for entrainment of circadian clockworks
- Chemical processing units in minimalistic manner
- Variety of chemical implementations
- Modularisation in (bio)chemical reaction systems

Some open questions

- Identification of in-vivo counterparts
- Replacement of individual processing units (like different core oscillators)
- Balancing advantages and limitations of the PLL approach
- Inclusion of temperature entrainment (by Arrhenius terms)
- Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops

Prospectives 000

Acknowledgements

Department of Bioinformatics at School of Biology and Pharmacy Friedrich Schiller University Jena

Jena Centre for **Bioinformatics**

Research Initiative in Systems Biology

Bundesministerium für Bildung und Forschung

German Federal Ministry of Education and Research. project no. 0315260A

Chemical Oscillation Frequency Control using Phase-locked Loops