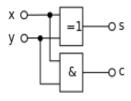


Chemisches Analogcomputermodell für einen Bit-Addierer mit Übertrag

Alexander Schmidt

06. Juli 2015

- Grundlagen
 - Halbaddierer
 - Volladdierer
 - Chemische Analogcomputermodelle

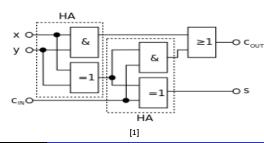

- Grundlagen
 - Halbaddierer
 - Volladdierer
 - Chemische Analogcomputermodelle
- 2 COPASI
 - Implementierung
 - Problem-Lösung

- Grundlagen
 - Halbaddierer
 - Volladdierer
 - Chemische Analogcomputermodelle
- 2 COPASI
 - Implementierung
 - Problem-Lösung
- 3 Ergebnisse
 - Stoffkonzentrationsverläufe I
 - Stoffkonzentrationsverläufe II
 - Stoffkonzentrationsverläufe III
 - Stoffkonzentrationsverläufe IV
 - 3-Bit-Addierwerk

- Grundlagen
 - Halbaddierer
 - Volladdierer
 - Chemische Analogcomputermodelle
- 2 COPASI
 - Implementierung
 - Problem-Lösung
- 3 Ergebnisse
 - Stoffkonzentrationsverläufe I
 - Stoffkonzentrationsverläufe II
 - Stoffkonzentrationsverläufe III
 - Stoffkonzentrationsverläufe IV
 - 3-Bit-Addierwerk
- 4 Abschluss

Halbaddierer

- zwei Eingänge mit x und y
- zwei Ausgänge mit s und c
- Addition zweier einstelliger Binärzahlen
- Aufbau:
 - AND-Gatter
 - XOR-Gatter



Χ	у	S	C _{out}
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

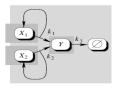
Volladdierer

- In Addierwerken existiert ein zusätzlicher Eingang cin
- Aufbau:
 - zwei Halbaddierer
 - OR-Gatter

Χ	у	Cin	S	C _{out}
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	0	0	1
1	1	1	1	1

Chemisches Rechnen

- Stoffkonzentrationen S_i entsprechen den boolschen Variablenwerten
- S_i in der nähe von $0 \longrightarrow false$
- S_i in der nähe von $1 \longrightarrow \mathsf{true}$
- mathematische Modellierung der Zeitabhängigkeit der Stoffkonzentrationen, erfolgt mittels Massenwirkungskinetik
 - → Differentialgleichungssystem erster Ordnung
 - \rightarrow realisiert mittels COPASI
- allgemeine Reaktionsgleichung:


$$a_{1,1}S_1 + ... + a_{p,r}S_p \xrightarrow{k_r} b_{1,1}S_1 + ... + a_{p,r}S_p$$

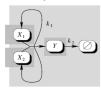
Boolsche Operationen

- Stoffkonzentrationen $S_i \in [0,1]$ und $x, y, c_{in} \in \{0,1\}$
- Realisierung des Volladdierers mittels boolscher Operationen:

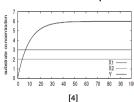
- OR
$$\longrightarrow x \lor y = x + y - x \cdot y$$

- AND $\longrightarrow x \land y = x \cdot y$
- NOT $\longrightarrow \neg x = 1 - x$

Modell Addition:

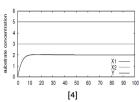

$$X_{1} \xrightarrow{k_{1}} X_{1} + Y$$

$$X_{2} \xrightarrow{k_{2}} X_{2} + Y$$

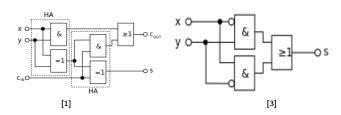

$$Y \xrightarrow{k_{3}} \emptyset$$

Mathematische Opperationen - Modelle

Multiplikation:


Stoffverlauf Multiplikation:

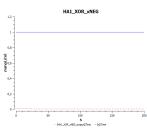
Subtraktion:



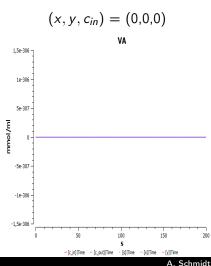
Stoffverlauf: Subtraktion

Implementierung

- 6 AND: 1 Spezies, 2 Reaktionen
- 4 NOT: 3 Spezies, 4 Reaktionen
- 3 OR: 4 Spezies, 9 Reaktionen
- Insgesamt:
- 34 Spezies
- 55 Reaktionen

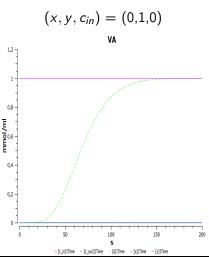


Problem-Lösung


- alle Ratenkonstanten: $k_i = 0.1$
- Subtraktion des Falles 1-1 zeigt nicht das gewünschte Verhalten
- \bullet justiere k_i um gewünschte Verhalten zu erreichen

$$k_1=0.1, k_2=0.1$$
HALXOR WHEG

$$k_1 = 0.1, k_2 = 1000$$



Stoffkonzentrationsverläufe I

-[c_in]|Time --[c_out]|Time --[s]|Time --[x]|Time --[y]|Time

Stoffkonzentrationsverläufe II

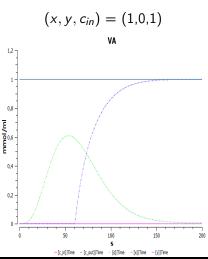

$$(x, y, c_{in}) = (1,0,0)$$

VA

VA

 $\begin{bmatrix} \overline{\xi} \\ \overline{0}0,6 \\ 0,4 \\ 0,2 \end{bmatrix}$
 $\begin{bmatrix} 0,4 \\ 0,2 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 0,5 \\ 0,6 \\ 0,6 \end{bmatrix}$
 $\begin{bmatrix} 0,5 \\$

Stoffkonzentrationsverläufe III


$$(x, y, c_{in}) = (0,1,1)$$
VA

VA

$$[x]_{0.8}$$

$$[x]_{$$

Stoffkonzentrationsverläufe IV

$$(x, y, c_{in}) = (1,1,1)$$

VA

VA

1.2

1.2

0.8

0.0

0.0

50

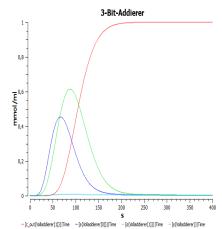
100

S

100

150

150


200

S

-[C.nillime --[C.nillime --[ollime --[o

3-Bit-Addierwerk

$$x = (0,0,1), y = (1,1,1)$$

Zusammenfassung

- :) Implementierung in COPASI läuft
 - → Volladdierer
 - → 3-Bit-Addierwerk
- Stoffkonzentrationsverläufe entsprechen der Wahrheitswertetabelle eines Volladdierers
- :(kleines Bauteil eines Addierwerkes, aber großer Aufwand
 - → 34 Spezies
 - → 55 Reaktionen

Quellen

- https://de.wikipedia.org/wiki/Volladdierer
- https://de.wikipedia.org/wiki/Halbaddierer
- https://de.wikipedia.org/wiki/XOR-Gatter
- Priv.-Doz. Dr.-Ing. habil. Thomas Hinze. *Computer der Natur*, 1. Auflage , ISBN: 978-87-403-0378-0

Grundlagen COPASI Ergebnisse Abschluss

Danke für die Aufmerksamkeit!