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Motivation - Map Coloring Problem
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Map Coloring Problem...
Coloring the countries of the card with a minimum number of colors so
that adjacent Countries do not have the same color

The most famous graph coloring problem
Proposed in the nineteenth century and finally solved in 1976.
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Graph Coloring Problem

A proper coloring of a graph is
an assignment of
nodes(vertices) with colors so
that each 2 adjacent nodes
have different colors scheme.

A c-coloring is a coloring which
uses c different colors.
The chromatic number X(G) of
a graph G is the smallest
number c for which G a
c-coloring possesses.

Figure: Petersen graph
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Graph Coloring - Formal

Given: Graph G = (V, E)
Sought: Coloring of G with X(G)

=⇒ can we find a c-coloring for G or is G c colorable?

=⇒ AnswerYES/NO : NP − hard problem!
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Solution with molecular algorithms : DNA
Computing
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Croitorus Algorithm (2002)

Let G=(V,E) be a graph with the vertices set V={ 1, 2,. . . , n} and
Sn the set of all permutations on the set V ==> Sn = n!

Theorem
For an element e v = v1 . . . vi . . . vj . . . vn of Sn, if e = vivj , i <
j and vi+1vj−1 is a stable set(=independent set), then e is called a bad
edge with respect to v
Let b(v) the number of all bad edges in G with respect to v. There is the
following theorem:

X (G ) = 1+ min
v∈Sn

b(v) (1)

For a given graph:
Obtaining an optimal c-coloring ⇔to find an ordering with minimum
number of bad edges.
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Croitorus Algorithm

genetic algorithm with 1 crossover operator and 4 mutation operators

A chromosome represents an ordering of the vertices of the graph

If the graph has n vertices, the chromosome will be a vector:
chrom=(v1, v2 . . . vn),where vi ∈ {1, 2 . . . n}, vi 6= vj , i 6= j .
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Operator : Crossing-over

Let P1 = (v1, v2 . . . vn) and P2 = (u1, u2 . . . un) be two parents
chromosomes.

Two cutting points C1,C2 ∈ {1, 2 . . . n − 1}
are generated randomly for parent1(P1) and parent2(P2) respectively .

One offspring is obtained by keeping unaltered genetic information from
parent1 before C1, the vertices after C1 from the first parent are rearranged
using the ordering defined by the second parent

The second offspring is constructed similarly

Julien A. Nguinkal (Universtiy of Jena) Molecular Algorithms
Block Colloquium, Summer 2015 14

/ 30



university-logo-filename

15/30

Operator : Crossing-over

Example{
Parent1 = 316 ↓ 254
Parent2 = 52 ↓ 4136

=⇒

{
Offsping1 = 316524
Offsping2 = 523164
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Operator : Order Mutation

Let parent = (v1, v2 . . . , vn) be a parent chromosome, the offspring is
obtained by exchange 2 vertices located in 2 randomly generated positions.

Example
parent= 316*254* =⇒ offspring 314256
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Operator : Block Mutation

.

Example
The operator translates blocks of k successive vertices (k is randomly
generated). Let
parent=(v1, v2 . . . , vn) be a parentchromosome. If k = 2 and i , j ∈
[1, n − 1] are randomly generated , theblock mutation yields offspring =
(v1 . . . vi−1vi+2 . . . vjvivi+1vj+1 . . . )
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Operator : Evaluation by Bad Edge

Will be discussed later...
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1 Merge: mixing the contents of two or more test tube into one, denote
by T← Merge(T1,T2 . . .Tn)

2 Detect: testing whether a test tube contains a DNA strand
3 Cut: cutting DNA strands at specific restriction sites, denote by

Cut(T,s1|s2).
4 Length: separating DNA strands according to their base length,

denoted by T← length(T0, l).

5 Extract: extracting all strands containing certain subsequences,
denoted by TâĘŘ← Extract(T0, (s1, s2 . . . sn)).

6 To-Single-Stranded: denature each dsDNA in tube and remove one
ssDNA, denoted by T← To − Single − Stranded(T0).

7 To-Double-Stranded: making ssDNA to dsDNA, denoted by
T-Double-Stranded(T0).
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DNA Implementation of Croitorus Algorithm

Begin with a diverse initial population of candidates.

1 Evaluate the fitness of the candidates.

2 Select and purify more fit candidates.

3 Amplify fit candidates with PCR

4 Reserve some, crossover a part and mutate others.

5 Combine all the candidates from step 4, and obtain a new generation.
Repeat.
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DNA Implementation of Croitorus Algorithm
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Encoding Scheme and Generating of Initial Candidate Pool

Use of dsDNA to encode the permutation of vertices and the encoding
looks like p1v1p2v2 . . . pnvnpn+1.

|V|=n, |E|=m. For each vertex
vi , a series of encoding p1vi , p2vi . . . pnvi denotes it, where pj (1 ≤ j ≤
n) means the order of vertex vi in a specific permutation j .

the length of a proper permutation will be (2n+1)l

For a DNA strand representing a permutation of vertices, there are n value
sections (v1 to vn) sandwiched betweenn + 1positionsections(p1 to pn+1)

To encode an edge e=vivj ,we use a series of encoding vipkvj(1 ≤ k ≤ n)

To generate an initial candidate pool, we can use POA (Parallel Overlap
Assembly)
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Implementation of Crossover
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Implementation of Order Mutation
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Implementation of Block Mutation

Block Mutation: The operator is used to translate blocks of successive
vertices. This operation can be implemented by many order mutations.
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Implementation of of Evaluation by Bad Edges

=> each stable set consists of successive vertices in the ordering
=> Our aim is to separate chromosomes by their fitness

=> We get k+1 DNA strands sets of different ranks when the algorithm
completes
=> We use 2m test tubes in step 2 and m+1 test tube in step 3
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Implementation of of Evaluation by Bad Edges

Selection is used to keep fit parent chromosomes in child generation and let
less fit chromosomes to die

For a given tube Wk obtained at the end of evaluation, the chromosomes
in it have the same fitness rank.

To let less fit candidates die, we can take a threshold c (c ≤ m) and
discard chromosomes in tube Wkwherec≤ k .

To embody the difference of fitness among reserved chromosomes, we can
perform different times of PCR for them, making the more fit chromosomes
to breed more offspring.

If after the evaluating, some test tubes Wi are not empty, that is the
number of bad edges less k-1.

then we can say that graph G can be k-colored and answer YES

We can get concrete colors by decoding these DNA sequences.
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Runtime Analysis

=>The initial generation of candidate data pool can be done in O(1) steps.
=>To complete the crossover operation, the number of extracting
operations required is O(n).
=> Order mutation requires O(n) extracting
=> The number of extracting operations required for block
mutation is O(n3)
=> Evaluation of candidate based on bad edges is proportional to O(mn).
=> total running time complexity to get a new generation is O(n3 + mn)
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END

THANKS FOR YOUR ATTENTION
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