Ei	nf	ül	hr	u	n	g
0		С				

saces

Sisyphus SRSin

Zusammenfassung o

Molecular Computing Vorlesung Bioinformatik und Informatik Sommersemester 2010

Thomas Hinze

Lehrstuhl Bioinformatik Friedrich-Schiller-Universität Jena

thomas.hinze@uni-jena.de http://users.minet.uni-jena.de/~hinze

4. Labornahe Simulation molekularer Computer

Weshalb labornahe Simulation?

- Modellbildung ist der Schlüssel zur formalen Beschreibung.
- Formale Beschreibung dient dem Verständnis.

Simulation

Einführung

- dient der Veranschaulichung.
- macht Prozesse f
 ür den Menschen fassbar und wahrnehmbar.
- erleichtert das Verständnis und zeigt Zusammenhänge auf.
- ermöglicht Was-wäre-wenn-Szenarien.
- dient der kostengünstigen experimentellen Vorbereitung und Optimierung von Laborimplementierungen.
- hilft beim Suchen und Aufdecken von Fehlern.
- kann durch gutes Anschauungsmaterial potentielle Geldgeber überzeugen

Einführu	ng
000	

saces

Sisyphus SRSim

Zusammenfassung o

Begriffe

System – Systemobjekte

Systemobjekte - Transition

Simulationsmethoden

- statisch vs. dynamisch
- deterministisch vs. stochastisch
- endogen vs. exogen

Dynamische Simulationen im Speziellen:

- ereignisgesteuert vs. zeitgesteuert
- diskret vs. kontinuierlich

Einführung	
000	

saces

Sisyphus SRSin

Zusammenfassung o

Begriffe

- System Systemobjekte
- Systemobjekte Transition

Simulationsmethoden

- statisch vs. dynamisch
- deterministisch vs. stochastisch
- endogen vs. exogen

Dynamische Simulationen im Speziellen:

- ereignisgesteuert vs. zeitgesteuert
- diskret vs. kontinuierlich

inführung	
•0	

E

saces

Sisyphus SRSin

Zusammenfassung o

Begriffe

- System Systemobjekte
- Systemobjekte Transition

Simulationsmethoden

- statisch vs. dynamisch
- deterministisch vs. stochastisch
- endogen vs. exogen

Dynamische Simulationen im Speziellen:

- ereignisgesteuert vs. zeitgesteuert
- diskret vs. kontinuierlich

Softwaretools zur Simulation molekularer Computer Auswahl

- AMBER (Simulation von Biomolekülen und ihrer Dynamik)
- CellDesigner / COPASI (Simulation chem. Reaktionsnetzwerke)
- DNA-Haskell (Funktionales Experimentiersystem, TU Dresden)
- EDNA (Virtuelles Reagenzglas, Univ. Memphis)
- FunDNA (Functional Workbench, Univ. Texas)
- Hellics (DNA Computing Simulation, Univ. Oldenburg)
- MGS (Rule-Based Language for Complex Objects, Univ. Evry)
- NACST (Toolbox-Sammlung zu DNA, Seoul National Univ.)
- P-System-Simulatoren (PSim, ..., U. Sheffield, Sevilla, Milano)
- saces (Simple Artificial Chemistry Experimental System)
- Sisyphus (Sim. Syst. for Phenomena Undergoing Side Effects)
- SRSim / LAMMPS (Rule-Based Modelling in Space)
- Virtuelle Labore (Univ. Oldenburg, OFFIS)

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	●00	000000000000000000000000000000000000000	00000	0

Simple Artificial Chemistry Experimental System

Entwickler: A. Aguillon, D. Noelpp, HTI Bern, 2005-2006

Idee

 Dynamisches Verhalten idealer Gase kann rechnen

Prinzip

- Menge von Partikeln Moleküle mit Parametern (*m*, *E*_b, #,...)
- Zufällig plaziert und angestoßen entsprechend Maxwell-Boltzmann-Verteilung
- Menge von Reaktionen und globale Parameter $A + B \longrightarrow C + D$; $E_{activation}$ (B oder D auch leer)
- Algorithmus: Brownsche Bewegung (random walk) mit elastischen/inelast. Stößen, Impuls- und Energieerhaltung
- Auswertung: Animation, Protokoll, Bericht, Histogramm
- Beispiele: endl. Automaten, Lösung NP-vollst. Probleme

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Maxwell-Boltzmann-Verteilung – saces (II) Geschwindigkeitsverteilung der Molekülobjekte

$$f_0(|\vec{v}|) = 4\pi \cdot \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} \cdot |\vec{v}|^2 \cdot e^{-\frac{m|\vec{v}|^2}{2k_B T}}$$

Screenshot: A. Aguillon, D. Noelpp. saces. HTI Bern, 2006

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	00•	000000000000000000000000000000000000000	00000	0

Simulationsbeispiel: Endlicher Automat

saces (III). Screenshots: A. Aguillon, D. Noelpp, HTI Bern, 2006

Name	Initial Count	Energy	Radius	Mass	Color
R	100	10	1	100	
5	0	10	1	100	15 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
т	0	10	1	100	
J	0	10	1	100	
в	400	1	0.3	3	
0	400	1	0.3	3	
•	0	1	0.3	3	

Molecular Computing - VL4

•	Objektorientierte Simulatio
•	Multimengenbasierter, rest

- Definition von Reagenzgläsern und ihres anfänglichen Inhaltes
- Visualisierung und Aufbereitung entstandener Reagenzglasinhalte

Konzept: T. Hinze, U. Hatnik, M. Sturm. An Object Oriented Simulation of Real Occurring Molecular Biological Processes for DNA Computing and Its Experimental Verification. In N. Jonoska, N.C. Seeman, editors, DNA Computing. Proceedings DNA7. Series Lecture Notes in Computer Science, Vol. 2340, pp. 1-13. Springer Verlag, 2002

Molecular Computing - VL4

Simulation System for Phenomena Undergoing Side Effects Entwickler: C.Frutschi¹, P.Grossniklaus¹, U.Hatnik², B.Jambresic¹, R.Lehmann¹, ¹HTI Bern, ²Fraunhofer-Institut IIS-EAS Gruppe ModSim, 2001–2005 Beschreibungen: http://www.hti.bfh.ch -> Informatik -> Diplomarbeiten Idee

Sisyphus

Sisvphus

- Nucleotidgenaue Abbildung linearer (Doppel)Stränge
- Satz von molekularbiologischen Operationen auf DNA
- Parametrisierung von Seiteneffekteinflüssen

Prinzip

- Formalisierung der Operationswirkungen einschl. wichtiger Seiteneffekte
- n in Java
- riktiver und nichtdeterministischer Ansatz

E	i	r	1	f	ü	ł	h	r	ι	1	r	1	
С	,	c)	C)								

saces

Sisyphus SRSim

Zusammenfassung o

DNA-Operationen

Sisyphus (III)

- Synthesis
- Annealing
- Melting
- Union
- Ligation
- Digestion
- Labeling
- Polymerisation
- Affinity Purification
- Detect (angereicherte Fluoreszenzmarker)
- Gel Electrophoresis
- \implies Jeweils spezifische Operations- und Seiteneffektparameter

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Seiteneffekte von DNA-Operationen

Sisyphus (IV)

			operations performed with state of the art laboratory techniques	synthesis	annealing	melting	union	ligation	digestion	labeling	polymerisation	PCR	affinity purification	gel electrophoresis																
cts	suc	ces NA ICe)	point mutation (% mutation rate)																											
e effe	utatio	feren in D iquer	deletion (% deletion rate, max. length of deletion)																											
f side	Е	(dif se	insertion																											
sification o	artifacts	(diff. from lin. DNA structure)	loss of linear DNA strands by forming hairpins, bulges, loops, junctions, and compositions of them (% loss rate of tube contents)																											
clas	ure	om tion on)	incomplete reaction (% unprocessed strands)																											
	oced	ces fr cificat	unspecificity (% error rate, maximum difference)																											
	u br	eren t sper of i	eren t sper of i	f sper	eren : spei	eren t sper of i	f sper	eren t spei of i	t sper	t sper	eren t sper of i	eren t spec	t spec	t spec	eren t sper	eren t spei	feren t sper of i	feren t spe of	supercoils											
	actic	(dif erfec	strand instabilities caused by temperature or pH																											
	in re	đ	impurities by rests of reagences																											
	lures		undetectable low DNA concentration (min. # copies)																											
	fai		loss of DNA strands (% loss rate of tube contents)																											
	supp	ported in simu	ulation tool in brackets: statistical parameters		::	signif	icant	side	effect	caus	ed b	, the	opera	ation																

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Stochastischer Simulationsansatz – Synthesis

Sisyphus (V)

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Stochastischer Simulationsansatz – Annealing

Sisyphus (VI)

Iteration molekularer Events

- (1) Create list (matrix) of molecular events and their probabilities including side effects
- 2) Select one molecular event randomly with respect to the probability distribution
- 3 Determine all possible reaction products from this molecular event and select one of them
- 4 Modify DNA pool

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Annealingprodukt mittels Nearest Neighbor Minimierung der freien Energie

alle Enthalpieänderungen in calimol

T. Hinze, M. Sturm. Rechnen mit DNA. Oldenbourg, 2004 Molecular Computing – VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Annealingprodukt mittels Nearest Neighbor

Sisyphus (VIII)

Minimierung der freien Energie: wahrscheinlichstes Hybridisierungsprodukt

Normwertetabelle (+37°C, $K_{Na^+} = 1 \frac{mol}{l}$)

nächster	ΔG in $\frac{\text{cal}}{\text{mol}}$
Nachbar	mor
AA/TT	-1013,27
AC/GT	-1471,09
AT/AT	-862,33
TA/TA	-499,71
TC/GA	-1284,64

nächster	ΔG in $\frac{\text{cal}}{\text{mol}}$
Nachbar	inor
CA/TG	-1354,90
CG/CG	-2135,74
CT/AG	-1298,15
GC/GC	-2195,79
GG/CC	-1829,39

End-	ΔG in $\frac{\text{cal}}{\text{mol}}$
stücke	
EA/TE	993,11
ET/AE	993,11
EC/GE	1002,02
EG/CE	1002,02

\implies Umrechnung bei Abweichung von den Normwerten mgl.

SantaLucia jr., H.T. Allawi, P.A. Seneviratne. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35(11):3555–3562, 1996

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Stochastischer Simulationsansatz – Digestion

Sisyphus (IX)

operation parameters:

inführung	saces	Sisyphus	SRSim	Zusammenfassung
00	000	000000000000000000000000000000000000000	00000	0

Simulationsansatz für Gel Electrophoresis

Sisyphus (X)

Dynamisch kontinuierlich

- Herleitung einer mathematischen Gesetzmäßigkeit für den zu simulierenden Vorgang
- Finden einer geeigneten Abstraktionsstufe
- Diskretisierung und Animation des zeitlichen und räumlichen Ablaufs

Einstellungen			
Einstellungen zur Elektrophorese			
Gesamtdauer der Animation :	50	1s - 9999s	
Zeitspanne der Animationsschritte :	0.1	0.01s - 0.99s	
Masszahl für elektrische Feldstärke :	niedrig hoc	'n	
Masszahl für Porengrösse des Agarose	gels :	h	
Einstellungen der Seiteneffekte	Gelelektrophorese		
Max. Laufabweichung der DNA-Strän	P4		
Schweiwert :	P3		
	P2	DNA in ein neues Tube	
	P1		
	Längenstandard	 1512 756 378 189	

Grafik: C. Frutschi, P. Grossniklaus. Simulation ausgewählter DNA-Computing-Operationen. HTI Bern, 2004

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Sisyphus (XI)

Gleichgewicht zwischen elektrischer und Reibungskraft

 $F_E = F_R$ $F_E = q \cdot E = q \cdot \frac{U}{h}$ Objektladung q
Gleichspannung U
Elektrodenabstand h

$$F_R = 6 \cdot \pi \cdot \eta \cdot r \cdot v \quad \text{(Stokessches Gesetz)}$$

Materialkonstante für Viskosität des Mediums
wirksamer Radius *r*

Bewegungsgeschwindigkeit V

 \implies Annahme: Kugel ("DNA-Knäuel") bewegt sich durch Flüssigkeit

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XI)

Gleichgewicht zwischen elektrischer und Reibungskraft

$$F_E = F_R$$

$$F_E = q \cdot E = q \cdot \frac{U}{h}$$
Objektladung q
Gleichspannung U
Elektrodenabstand h

 $F_{R} = 6 \cdot \pi \cdot \eta \cdot r \cdot v \quad \text{(Stokessches Gesetz)}$ Materialkonstante für Viskosität des Mediums η wirksamer Radius rBewegungsgeschwindigkeit v

 \implies Annahme: Kugel ("DNA-Knäuel") bewegt sich durch Flüssigkeit

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XI)

Gleichgewicht zwischen elektrischer und Reibungskraft

$$F_{E} = F_{R}$$

$$F_{E} = q \cdot E = q \cdot \frac{U}{h}$$
Objektladung q
Gleichspannung U
Elektrodenabstand h
$$F_{R} = 6 \cdot \pi \cdot \eta \cdot r \cdot v$$
 (Stokessches Gesetz)
Materialkonstante für Viskosität des Mediums η
wirksamer Radius r

Bewegungsgeschwindigkeit V

⇒ Annahme: Kugel ("DNA-Knäuel") bewegt sich durch Flüssigkeit

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XII) Radius *r* auf Masse und Dichte zurückführen

 $\begin{array}{lll} V_{\text{Kugel}} & \geq & V_{\text{DNA}-\text{Molekul}} \\ \frac{4}{3} \cdot \pi \cdot r^3 & \geq & \frac{m}{\rho} \\ & & \text{Masse } m \\ & & \text{Dichte } \rho \end{array}$

Daraus folgt:

$$r \geq \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}}$$
$$r = \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}} \cdot G \text{ mit } G > 1$$

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XII) Radius *r* auf Masse und Dichte zurückführen

$$V_{\text{Kugel}} \geq V_{\text{DNA-Molekul}}$$

 $\frac{4}{3} \cdot \pi \cdot r^3 \geq \frac{m}{\rho}$
Masse m
Dichte ρ

Daraus folgt:

$$r \geq \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}}$$
$$r = \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}} \cdot G \text{ mit } G > 1$$

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XII) Radius *r* auf Masse und Dichte zurückführen

$$V_{\text{Kugel}} \geq V_{\text{DNA-Molekal}}$$

 $\frac{4}{3} \cdot \pi \cdot r^3 \geq \frac{m}{\rho}$
Masse m
Dichte ρ

Daraus folgt:

$$r \geq \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}}$$
$$r = \left(\frac{3}{4 \cdot \pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}} \cdot G \text{ mit } G > 1$$

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XIII) Bewegungsgleichung der DNA-Moleküle im Gel

Zurückgelegter Weg s in Abhängigkeit von der Zeit t

$$\begin{split} \mathbf{s}(t) &= \mathbf{v} \cdot t \\ \mathbf{s}(t) &= \frac{q \cdot E}{6 \cdot \pi \cdot \eta \cdot \left(\frac{3 \cdot m}{4 \cdot \pi \cdot \rho}\right)^{\frac{1}{3}} \cdot G} \\ &= \frac{q}{\left(\frac{6 \cdot \pi \cdot \left(\frac{3}{4 \cdot \pi \rho}\right)^{\frac{1}{3}} \cdot G}{\text{idealisierend als Lauf-konstante aufgefasst}} \cdot \underbrace{\frac{E}{\eta}}_{\text{DNA-unabhängige}} \cdot \underbrace{\frac{1}{m^{\frac{1}{3}}}}_{\text{Konstante}} \cdot t \\ &= C \cdot \frac{E}{\eta} \cdot \frac{1}{m^{\frac{1}{3}}} \cdot t \end{split}$$

Laufabweichungen (Seiteneffekteinflusse) durch randomisiertes Variieren von DNA-Molekülmassen m nachbilden Molecular Computing - VL4
Thomas Hinze

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Sisyphus (XIII) Bewegungsgleichung der DNA-Moleküle im Gel

Zurückgelegter Weg s in Abhängigkeit von der Zeit t

$$s(t) = v \cdot t$$

$$s(t) = \frac{q \cdot E}{6 \cdot \pi \cdot \eta \cdot \left(\frac{3 \cdot m}{4 \cdot \pi \cdot \rho}\right)^{\frac{1}{3}} \cdot G} \cdot t$$

$$= \frac{q}{6 \cdot \pi \cdot \left(\frac{3}{4 \cdot \pi \rho}\right)^{\frac{1}{3}} \cdot G} \cdot \underbrace{\frac{E}{\eta}}_{\text{idealisierend als Lauf-konstante}} \cdot \underbrace{\frac{E}{\eta}}_{\text{NA-unabhängige}} \cdot \underbrace{\frac{1}{m^{\frac{1}{3}}}}_{\text{Konstante}} \cdot t$$

Laufabweichungen (Seiteneffekteinflüsse) durch randomisiertes Variieren von DNA-Molekülmassen m nachbilden Molecular Computing – VL4
Thomas Hinze

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XIII) Bewegungsgleichung der DNA-Moleküle im Gel

Zurückgelegter Weg s in Abhängigkeit von der Zeit t

$$\begin{aligned} \mathbf{s}(t) &= \mathbf{v} \cdot t \\ \mathbf{s}(t) &= \frac{q \cdot E}{\mathbf{6} \cdot \pi \cdot \eta \cdot \left(\frac{3 \cdot m}{4 \cdot \pi \cdot \rho}\right)^{\frac{1}{3}} \cdot \mathbf{G}} \cdot t \\ &= \frac{q}{\mathbf{6} \cdot \pi \cdot \left(\frac{3}{4 \cdot \pi \rho}\right)^{\frac{1}{3}} \cdot \mathbf{G}} \cdot \underbrace{\frac{E}{\eta}}_{\text{DNA-unabhängige}} \cdot \underbrace{\frac{1}{m^{\frac{1}{3}}}}_{\text{DNA-abhängige}} \cdot t \\ &= C \cdot \frac{E}{\eta} \cdot \frac{1}{m^{\frac{1}{3}}} \cdot t \end{aligned}$$

Laufabweichungen (Seiteneffekteinflusse) durch randomisiertes
 Variieren von DNA-Molekülmassen *m* nachbilden
Molecular Computing – VL4
 Thomas Hinze

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	0000000000000000000	00000	0

Sisyphus (XIII) Bewegungsgleichung der DNA-Moleküle im Gel

Zurückgelegter Weg s in Abhängigkeit von der Zeit t

$$\begin{split} \mathbf{s}(t) &= \mathbf{v} \cdot t \\ \mathbf{s}(t) &= \frac{\mathbf{q} \cdot \mathbf{E}}{\mathbf{6} \cdot \pi \cdot \eta \cdot \left(\frac{3 \cdot m}{4 \cdot \pi \cdot \rho}\right)^{\frac{1}{3}} \cdot \mathbf{G}} \cdot t \\ &= \frac{\mathbf{q}}{\underbrace{\mathbf{6} \cdot \pi \cdot \left(\frac{3}{4 \cdot \pi \rho}\right)^{\frac{1}{3}} \cdot \mathbf{G}}_{\text{idealisierend als Lauf-konstante}} \cdot \underbrace{\frac{\mathbf{E}}{\eta}}_{\text{DNA-unabhängige}} \cdot \underbrace{\frac{1}{m^{\frac{1}{3}}}}_{\text{Konstante}} \cdot t \\ &= \mathbf{C} \cdot \frac{\mathbf{E}}{\eta} \cdot \frac{1}{m^{\frac{1}{3}}} \cdot t \end{split}$$

 \implies Laufabweichungen (Seiteneffekteinflüsse) durch randomisiertes Variieren von DNA-Molekülmassen *m* nachbilden

Molecular Computing - VL4

Beschreibung der Gelelektrophorese Sisyphus (XIV)

Bestimmung der Molekülmasse aus der Bindungsmatrix

Nucleotid bzw.	chemische	Masse	Molekulargewicht
Strangendenmarkierung	Summenformel	<i>m</i> _X in g	$M_{\rm X}$ in $rac{{ m g}}{{ m mol}}$
А	C ₁₀ H ₁₂ N ₅ O ₆ P	$5,4668\cdot 10^{-22}$	329, 2
С	C ₁₀ H ₁₀ N ₃ O ₇ P	$5,2337 \cdot 10^{-22}$	315,2
G	C ₁₀ H ₁₂ N ₅ O ₇ P	5,7324 · 10 ⁻²²	345,2
Т	C ₁₀ H ₁₂ N ₂ O ₈ P	$5,3004 \cdot 10^{-22}$	319,2
Н	OH	$2,8243 \cdot 10^{-23}$	17,0
Р	PO ₄	$1,5770 \cdot 10^{-22}$	95,0
В	C ₁₀ H ₁₆ N ₂ O ₃ S	$4,0572 \cdot 10^{-22}$	244,3

Bandenintensität von Anzahl Wasserstoffbrücken abhängig

Maßzahl: $\#w = 2 \cdot \#AT + 3 \cdot \#CG$

Maßzahl in Graustufe (Helligkeitswert) umrechnen

Aufsummieren aller Helligkeitswerte über die Gellänge pro Zeitschritt

Molecular Computing - VL4

Beschreibung der Gelelektrophorese Sisyphus (XIV)

Bestimmung der Molekülmasse aus der Bindungsmatrix

Nucleotid bzw.	chemische	Masse	Molekulargewicht
Strangendenmarkierung	Summenformel	<i>m</i> _X in g	$M_{\rm X}$ in $rac{{ m g}}{{ m mol}}$
А	C ₁₀ H ₁₂ N ₅ O ₆ P	$5,4668\cdot 10^{-22}$	329, 2
C	C ₁₀ H ₁₀ N ₃ O ₇ P	$5,2337 \cdot 10^{-22}$	315,2
G	C ₁₀ H ₁₂ N ₅ O ₇ P	$5,7324 \cdot 10^{-22}$	345,2
Т	C ₁₀ H ₁₂ N ₂ O ₈ P	$5,3004 \cdot 10^{-22}$	319,2
Н	OH	$2,8243 \cdot 10^{-23}$	17,0
Р	PO ₄	$1,5770 \cdot 10^{-22}$	95,0
В	C ₁₀ H ₁₆ N ₂ O ₃ S	$4,0572 \cdot 10^{-22}$	244,3

Bandenintensität von Anzahl Wasserstoffbrücken abhängig

Maßzahl: $\#w = 2 \cdot \#AT + 3 \cdot \#CG$

Maßzahl in Graustufe (Helligkeitswert) umrechnen

Aufsummieren aller Helligkeitswerte über die Gellänge pro Zeitschritt

Einführung

ooo

Sisyphus SRSim

Zusammenfassung o

Simulationsansatz – Detect

Sisyphus (XV) Simulation von DNA-Chips (Microarrays)

R. Lehmann, B. Jambresic. Simulation der Arbeitsweise eines DNA-Chips. HTI Bern, 2005 Molecular Computing – VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Beispiel für Operationsfolgen – PCR Sisyphus (XVI)

⇒ Sichtbarmachen von Seiteneffekteinflüssen

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	00000	0

Beispiel für Operationsfolgen – PCR Sisyphus (XVII)

saces	Sisyphus	SRSim	Zusammenfassung
000	000000000000000000	00000	0

Eigenschaften von Sisyphus

Sisyphus (XVIII) **DNA-Operationen** Gel Electrophoresis Affinity Purification Polymerisation Annealing Synthesis Digestion Labeling Ligation Melting Union Eigenschaften der beschriebenen Simulationen Split Simulationsergebnis primärstrukturabhängig ausgewertete Parameter Simulationsergebnis sekundärstrukturabhängig Simulationergebnis von Masse der Objekte abhängig Simulationsergebnis von Ort oder Lage der Objekte abhängig Simulationsergebnis von Bewegungsgeschwindigkeit der Objekte abhängig statisch -11 dynamisch diskret genutzte Simula-tionsmethoden dynamisch kontinuierlich deterministisch (unter Vernachlässigung der Seiteneffekteinflüsse) stochastisch (unter Vernachlässigung der Seiteneffekteinflüsse) exogen (bzgl. Temperaturspezifität) Punktmutationen Deletions berücksichtigte Seiteneffekte unerwünschte nichtlineare DNA (Artefakte) Strangverluste unvollständiger Prozessverlauf unspezifische Wirkungen im Prozessverlauf

G. Grünert, B. Ibrahim, T. Lenser, T. Hinze, P. Dittrich. Rule-Based Modeling in Space, BMC Bioinformatics, 2010 Molecular Computing – VL4 Thor

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	0000	0

SRSim: Simulator für mol. Dynamik im Raum (II)

G. Grünert, B. Ibrahim, T. Lenser, T. Hinze, P. Dittrich. Rule-Based Modeling in Space, BMC Bioinformatics, 2010

Molecular Computing - VL4

SRSim: Simulator für mol. Dynamik im Raum (III)

G. Grünert, B. Ibrahim, T. Lenser, T. Hinze, P. Dittrich. Rule-Based Modeling in Space, BMC Bioinformatics, 2010 Molecular Computing – VL4 Thomas Hinze

SRSim: Simulator für mol. Dynamik im Raum (IV)

G. Grünert, B. Ibrahim, T. Lenser, T. Hinze, P. Dittrich. Rule-Based Modeling in Space, BMC Bioinformatics, 2010

Molecular Computing - VL4

Einführung	saces	Sisyphus	SRSim	Zusammenfassung
000	000	000000000000000000000000000000000000000	0000●	0

SRSim: Simulator für mol. Dynamik im Raum (V)

G. Grünert, B. Ibrahim, T. Lenser, T. Hinze, P. Dittrich. Rule-Based Modeling in Space, BMC Bioinformatics, 2010

Molecular Computing - VL4

Sisyphus SRSim

Zusammenfassung

Zusammenfassung

- Simulation dient der kostengünstigen Vorbereitung und Optimierung von Laborexperimenten zur Implementierung molekularer Computer.
- Jede Simulation ist nur so gut wie das zugrunde liegende mathematische Modell und der verwendete Datenpool.
- Simulationen können immense Hardwareressourcen beanspruchen.
- Verantwortung in der Auswahl/Kombination verwendeter Simulationsmethoden
- Hauptbestandteile: Modellbeschreibung, Parametererfassung, Rechenkern, Aufbereitung der Ergebnisse
- Entwicklung von Simulationstools einhergehend mit fortlaufender Validation und Verifikation